Outline

- Lecture 1
- Lecture 2
- Lecture 3
- Lecture 4
- Lecture 5
- Lecture 6
- Lecture 7

Lecture 1

Information Retrieval - IR

- Indexing
- IR models
- Weighting
- Evaluation
IR models - overview (fig 2.1)

User Tasks
- Retrieval: Ad hoc
 - Filtering
- Browsing

Classic Models
- Boolean
- Vector space
- Probabilistic

Structured Models
- Non-overlapping Lists
- Proximal nodes

Non-classic models
- Fuzzy
 - Extended Boolean
- Algebraic
 - Generalized vector
 - LSI
- Neural Networks
 - Inference Network
 - Belief Network
- Probabilistic

IR models - vector space

Bag-Of-Words:
- Syntax irrelevant
- Document structure irrelevant
- Meta-information irrelevant
- Document/query = n-dimensional vector

Weighting TF*IDF

Terms should be important in the document
Terms present in many documents are not important

\[
\text{similarity} = \cos \theta = \frac{\text{document} \cdot \text{query}}{||\text{document}|| \cdot ||\text{query}||}
\]

\[
\text{term frequency} \quad \cdot \quad \text{inverse document frequency}
\]

Various normalizations
Recall/Precision

Outline

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7

Lecture 2

- Query languages/protocols
- Link based ranking

Query languages - aspects

- keyword
- context
- Boolean
- natural language
- pattern matching
 - truncation
 - wild cards
 - regular expressions
 - fuzzy search
- structured
 - fields
Query languages

- Expressiveness
- Standardization
- Examples
 - Structured Query Language - SQL
 - Common Query Language - CQL
 - XQuery
 - Proprietary/home grown
 - Google

Query operations

- relevance feedback
 - Give me more like this
 - New Relevance Feedback vector =
 Original query vector
 + mean of relevant documents (vectors) in hit set
 - mean of non-relevant documents (vectors) in hit set

- query expansion
 - Add or remove search terms
 - Change Boolean operators
 - Change wild cards

Network protocols/queries

- Dedicated protocol
 - Z39.50
 - MySQL network protocol
- CGI-script - Web Common Gateway Interface
- Web services
- Search/Retrieval via URL - SRU
- OpenSearch
- Open Archives Initiative - OAI

PageRank

$$PR(u)_t = d \sum_{v \in B_u} \frac{PR(v)_{t-1}}{N_v} + (1 - d)E(u)$$

- Random surfer model
 - Click on a random link in the page
 - Eventually gets bored and jumps to a random page
- Converges to a stable solution
- Problems
 - size of the Web
 - pages without links - ‘dangling pages’ (rank sinks)
 - converging
 - link-spamming
PageRank + TF*IDF

Relevance ranking
Combine PageRank with vector space model

\[PR(D) \times sim(Q, D) \]
or
\[f(PR(D)) \times sim(Q, D) \]

In practice
- proximity
- structure: title, link-anchor text
- metadata: keywords, description
- and · · ·

Lecture 3

Text
- Unicode character set (UTF-8) > 100000 characters
- Zipf’s law ⇒ Skewed distribution - stopwords
- Heaps’ law: Vocabulary \(\sim n^\beta \); \(\beta < 1 \)
- Metadata
 - Author, source, length
 - Dublin Core Metadata Element Set
- Similarity models: Hamming Distance, Edit (Levenshtein) Distance
- Markup languages
- Text operations

Outline
- Lecture 1
- Lecture 2
- Lecture 3
- Lecture 4
- Lecture 5
- Lecture 6
- Lecture 7

Markup Languages
- SGML - Standard Generalized Markup Language
 - HTML - HyperText Markup Language
 - XML - eXtensible Markup Language
- TeX/ LaTeX
Text operations - preprocessing

1: Lexical analysis
2: Stopwords
3: Stemming
4: Selection of indexing terms
5: Thesaurus

Outline

1. Lecture 1
2. Lecture 2
3. Lecture 3
4. Lecture 4
5. Lecture 5
6. Lecture 6
7. Lecture 7

Lecture 4

LSI (Latent Semantic Indexing)- concepts
- The term-document matrix is decomposed into three other matrices of a special form by use of Singular Value Decomposition (SVD)
- The matrices show a breakdown of the original relationships into linearly independent components
- Many of these components are very small and can be ignored - leading to an approximate model that contains fewer dimensions.

SVM (Support Vector Machines) - classification

LSI - reduced SVD

- Reduce dimensionality => retain only k largest singular values
- Saved space

$M \times N$ matrix A (term/document) \rightsquigarrow reduced SVD:

$$A \approx A_k = U_k \Sigma_k V_k^T$$
LSI - Concept extraction

use rows of $\Sigma_k^{-1} U_k^T$ as concepts

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Concept 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>carlstrom</td>
<td>regia</td>
</tr>
<tr>
<td>rick</td>
<td>oct</td>
</tr>
<tr>
<td>amelnx</td>
<td>chrisp</td>
</tr>
<tr>
<td>advmar</td>
<td>problems</td>
</tr>
<tr>
<td>cuttings</td>
<td>pm</td>
</tr>
<tr>
<td>september</td>
<td>ip-forum</td>
</tr>
<tr>
<td>miller</td>
<td>stratification</td>
</tr>
<tr>
<td>re</td>
<td>uk</td>
</tr>
<tr>
<td>wants</td>
<td>bladderwort</td>
</tr>
<tr>
<td>aquatic</td>
<td>cuttings</td>
</tr>
<tr>
<td>rotundifolia</td>
<td></td>
</tr>
<tr>
<td>bladderwort</td>
<td></td>
</tr>
</tbody>
</table>

HARD to interpret

Text classification

- Goal: classify documents into predefined categories
- Examples
 - Subject classification: 'business', 'sports', 'engineering', ...
 - Review classification: 'positive' or 'negative'
 - Web page classification: 'Personal homepage' or others
- Approach: supervised machine learning (\Rightarrow SVM)
 - Each predefined category needs a set of training documents
 - From training sets train a classifier
 - Use classifier to classify new documents

SVM

- SVM maximize the margin around the separating hyper-plane
- Decision function specified by support vectors (from training examples)
- Quadratic programming problem

Hot text classification method
Lecture 5

Web Search
- Metasearch engines
- Web crawling
- Browsing vs search

Web Search
- Challenges
 - Distributed, dynamic data
 - Large volume
 - Unstructured, heterogeneous data
- Size, coverage
- General vs focused
- Special functions, User interface
- Ranking
- Limited overlap between search engines

Search Engine - Basic structure

- Simultaneously search several individual search engines
- Query translation
- Result merging
 - Simple merge
 - Duplicate detection
 - tf-idf/similarity ranking
 - Position based

- software crawling the web (much like a human clicking on links)
- collect all found web-pages into a database (IR system)
- offer a web-interface to that database
Web Robot - Basic architecture

Focused Crawling

Browsing vs search

Outline

Search
- LOTS of data
- Unstructured
- Unrelated items clutter results

Browsing
- Small amounts of data
- Hierarchically structured
- Quality assessed

Focus:
- Domain
- Project
- Country
- Region
- Topic
- Subject
Lecture 6

- Recommender systems
- Indexing, searching
- Example IR systems

Recommender systems

Content based filtering

Try to predict a rating based on my own ratings
- Represent items as a set of features
 - \(item_j = (w_{1j}, \ldots, w_{kj}) \)
- Users rank items \(\rightarrow \) user profile in feature space
 - \(user_c = (w_{c1}, \ldots, w_{ck}) \)
- Vector space! (feature/item matrix, tf idf, cosine similarity, ...)
- User profile used as query

Collaborative filtering

Try to predict rating based on other users ratings
- Memory based
 - Make rating based on entire collection
 - Ex: \(rating_{c,s} = k \sum_{c' \in C} sim(c, c') \cdot rating_{c', s} \)
 - User \(c \), Item \(s \)
 - \(C \) Set of users most similar to \(c \)
 - \(k \) Normalizing factor (usually \(\frac{1}{\sum_{c' \in C} |sim(c, c')|} \))
- Model based
 - Try to learn a model to be used for predicting ratings
 - Ex: Probabilistic model, Machine learning, ...
Hybrid systems

- Content based filtering + Collaborative filtering
 - Combining separate recommenders
 - Adding content based characteristics to collaborative filtering
 - Adding collaborative characteristics to content based filtering

Introduction: Indexing, searching

- Sequential search
 - Small databases
 - Volatile data
- Indexes
 - Large databases
 - Semi-static data
 - Inverted files

Inverted files

- Principal data structure
 - Effective
 - Allows fast searching
 - Substantial storage overhead
 - Speed more important than storage
- For each term
 - List of document ID’s
 - (Term frequency in each document)
 - (Position in document)
- Used for
 - Boolean searches
 - Vector space ranking
 - Proximity, phrases

Example IR-systems

- IndexData: Zebra
 - free, GPL license
 - index records in XML, SGML, MARC, e-mail archives, ...
 - supports SRU/CQL, Z39.50, ZOOM
- Apache: Lucene and Solr
 - free, open source
 - index records via XML over HTTP
 - query via HTTP GET, XML results
Digital Library

- body of knowledge
- digital information
- large collection
- builds on current libraries
- can be accessed from anywhere
- extended IR system
 - support large collections
 - searching
 - cataloguing(indexing)

Problems

- multilingual
- multimedia
- structured docs
- distribution
- federated search
- access

interoperability!
Standards

- protocols
- metadata
- classification systems
- query languages