

EITG05 – Digital Communications

Week 6, Lecture 2

Course Summary and Outlook

Final Exam

- Written exam
- Thursday, October 26, 2017, 14.00 19.00 in MA 10A–E
- ► Five problems with 10 points each
- 20 points or more are required to pass
- All material from the lectures and course outline is relevant
- Previous exams can be found on the webpage

You are allowed to use:

- the course compendium
- a printout of the lecture slides
- a pocket calculator (but no devices that can connect to the internet)
- paper will be provided

Please participate in the online course evaluation (CEQ) open: Oct 28 - Nov 14

Scope of this course

- Transmitter principles: bits to analog signals (Chap. 2)
- Characteristics of the communication link (Chap. 3,6)
- Receiver principles: analog noisy signals to bits (Chap. 4,5,6)

Requirements:

- Data should arrive correctly at the receiver
- High bit rates are desirable
- Energy/power efficiency
- Bandwidth efficiency

What are the technical solutions and challenges?

Michael Lentmaier, Fall 2017

Digital Communications: Week 6, Lecture 2

Digital Communications, Advanced Course

Contents:

- Signal space representation
- Detailed treatment of OFDM
- More about MIMO (multiple antenna systems)
- Trellis-coded signals: combining coding with modulation
- Time-varying multipath channels

Project:

- The course includes some project to be done in groups of two
- Study a relevant application/technical problem
- Topic can be chosen by each group (based on scientific articles)
- Written report, oral presentation and opponent to other group

Information Theory

- Studies fundamental limits of communication
- How can we define a quantitative measure of information?
- What is the ultimate compression rate? \Rightarrow source coding theorem
- What is the ultimate data rate? \Rightarrow channel coding theorem / capacity
- Fundamental limits are studied for: - single-user channels
- OFDM systems
- MIMO systems
- Practical algorithms for data compession are studied: Huffman coding, Lempel-Ziv coding

Digital Communications: Week 6 Lecture 2

Channel Coding for Reliable Communication

Content:

- Chapter 1: Introduction
- Chapter 2: Principles of Error Control Coding
- Chapter 3: Optimal Decoding Methods
- Chapter 4: Iterative Decoding of Concatenated Codes
- Chapter 5: Reed-Solomon Codes

After this course you should understand:

- general principles of coding
- important coding schemes: binary block codes, RS codes, convolutional codes, concatenated codes
- common methods of decoding: algebraic decoding. ML/MAP decoding, iterative decoding

The coding theory challenge

Source: D.J. Costello, Jr., "Modern Coding Theory", Lecture at the Third Canadian Summer School on Communication: and Information Theory, Banff, Alberta, Canada, August 19, 2008

```
Michael Lentmaier, Fall 2017
```

Digital Communications: Week 6. Lecture 2

More courses about communications

Communication theory

- Digital Communications, Advanced Course, ETTN01 (HT2)
- Channel Coding for Reliable Communication, EITN70 (HT 2)
- Information Theory, EITN45 (VT 2)
- Cryptography, EDIN01 (HT 2)

Wireless systems

- Wireless Communication Channels, EITN85 (VT 1)
- Wireless System Design Principles, EITN75 (VT 2)
- Modern Wireless Systems LTE and Beyond, ETTN15 (VT 2)
- Multiple Antenna Systems, EITN10 (HT 1)
- Project in Wireless Communications, EITN21 (HT 1+2)

Networks

- Network Architecture and Performance, ETSN10 (VT 1)
- Internet Protocols, ETSF05 / ETSF10 (HT 1+2 / HT 2)

And how does the future look like?

Cisco mobile data traffic forecast

Michael Lentmaier, Fall 2017 Digital Communications: Week 6, Lecture 2

Increasing spectral efficieny: Massive MIMO

Upcoming wireless standard 5G

Challenging targets

Source: Nokia Networks: Looking ahead to 5G. White paper, April 2014

Michael Lentmaier, Fall 2017

Digital Communications: Week 6, Lecture 2

Car to Car Communication

Communication links between cars for increasing traffic safety must be very reliable and fast

Michael Lentmaier, Fall 2017

The Tactile Internet

5G innovation opportunities- A discussion paper - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/ [accessed 3 Oct, 2017]

Michael Lentmaier, Fall 2017 Digital Communications: Week 6, Lecture 2

Internet of Things (IoT) and Cloud Services

Communication links are an integrated part of the cloud and form the basis for efficient and reliable services

Michael Lentmaier, Fall 2017

Digital Communications: Week 6, Lecture 2