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General receiver for M-ary signaling Example: QAM Signaling
» Consider the general receiver structure from Chapter 4: » Recall the simplified receiver considered in Example 4.4:
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» Decision variables are computed by correlators or matched filters » Only two correlator branches are required instead of M

» Each possible signal alternative is recreated in the receiver
» Question: can we apply this to bandpass signals? Yes!

But: recreating signals at large frequencies f; is a challenge
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Transmission of bandpass signals

» Recall the transmitter structure from Chapter 3:

cos(2nf 1)
xy©
Original Digital
information ——= signal — x(t)
(digital or analog) processor | Xy ® <:H:>
-sin(2mfct)

» A general bandpass signal can always be written as

x(t) = x1(t) cos(2nmf,t) — xo(t) sin(2nfet), —eo<t< oo

» x;(): inphase component xo(t): quadrature component
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Receivers for bandpass signals

» Our goal: reproduce components x;(r) and x,(r) at the receiver
» In the transmitted bandpass signal x(¢) these components were
shifted to the carrier frequency f.
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» ldea: shifting the signal back to the baseband by multiplying with
the carrier waveform again (recall Ex. 2.19 and Problem 3.9)

» A lowpass filter Hyp(f) is then applied in the baseband to remove
undesired other signals or copies from the carrier multiplication
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QPSK Example (considered in week 3)

x7(t) cos(2m fot)
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Exercise: determine x;(r) and xo(r) from these figures
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Homodyne receiver frontend

Acos( o t+ q>err(t))

- Asin( o+, (1)

» Receiver is not synchronized to transmitter: phase errors @,(¢)
» Assume first r(t) = x;(t) cos(2mfet) (xo(¢) =0 and no noise)
ur(t) = [x;(t) cos(2mf. 1) - A cos 2nfet 4 Gerr(1)) ],
_

Tt)A (cOS(@err (1)) 4 cOS(27 2f 1+ Perr (1)) ] LP

= @A Cos(¢err(t))

(1)

» Likewise uolt) = _%A Sin (e (1))

Michael Lentmaier, Fall 2017 Digital Communications: Week 6, Lecture 1



The impact of phase errors Coherent receivers

» Assuming r(r) = x;(t) cos(2f.t) we have found that » Assume now that we can estimate ¢,,,(r)
The signal x;(z) is contained in both u;(¢) and uy(z
() =" A cos(@un(s)) . uo(t) =~ 4 sin(r (1) " The signalu(y wls) and ugls)
_aln) IO e
> Ideal case: ¢err(t) — 0 M[(l‘) - 2 A COS((Perr(t)) I MQ(t) - 2 A Sm(‘z)err(t))
u(t)=x/(¢)/2-A and uy(t) =0 » Coherent reception:
= the inphase branch is independent of the quadrature branch by combining both components the signal can be recovered by
» Phase errors: ¢,,.(t) #0 iy (t) = up(t)-cos(Perr (1)) —ug(t) -sin(Qerr (1))
ur(t) <xr(1)/2-A and up(r) #0 (crosstalk)
e = 51D 4 052 (9o (1)) + L A sin2 (9 (1)) = 1D 4
» If ¢..(¢) changes randomly (jitter) the average u,(¢) can vanish 2 2 2

» Ignoring the effect of phase errors can lead to bad performance > Observe: same result as in the ideal case gerr() =0
Compare: non-coherent DPSK receiver (last week, p. 400-403)

Question: what can we then do about phase errors? can be used if phase estimation is not possible
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Overall transmission model Inphase and quadrature relationship

cos@ct) Acos(@ct+Perr (1)

» With the complete signal r(¢) entering the receiver the output
w® signals become

wO+y(O+..+yYNO

X (©

Original Signal (t) (t) (t) (1) °
e el g 0 R T
Q0 ur(1) =[y(1) A cos (2fe 1+ 9err(1))]

cos(@epp()A/2

; -Asin( o¢t+ derr t
| -sin(od) | | Asin( oct+ Perr (1) | _ LU A cos(Perr (1)) s /X\ ) o
: Transmitter side : Channel : Homodyne reception : 2 ( ) L
t .
+ yQTA sin(@err (1))
» The signal y(¢) is given by sin(Pen()A2
Y(1) = 2() + wlt) = x(1) * h(t)+w(7) ug(r) =[ = y(1) A sin Qe+ err (1)) ] r :
~ yol1) QO x =(+ uQ®

» It can be written as ==4 c0s(@err (1)) kg

cos(@pp(1)A/2

yi(t)

y(t) = y1(t) cos(2xf. 1) — yo(t) sin(27f, 1) - A sin( Qe (1))

Can we express u;(t) and ug(z) in terms of x;(¢) and xo(1)?
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Including the channel filter

» Before we can relate y(r) = z(r) + w(¢) to x(r) we need to consider
the effect of the channel

Z2(t) = x(t) * h(z) x(t) 2(t)

» We assume that the impulse response A(t) can be represented
as a bandpass signal

h(t) = hy() cos(2mfet) — ho(t) sin(2xf, 1)
» With some calculations the signals can be written as (p. 159-160)

Xy

xQ(l)
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A compact description

» A more compact description is possible by combining x;(¢) and
xo(1) to an equivalent baseband signal

X(1) = xi(1) +jxo(1)
» The transmitted signal can then be described as

x(1) = Re { (x;(t) +jxo(t)) 2™’} = Re {%(t) e™27e!)

X012 v _
AN T AT
- fe 0 fe

» With Re{a} = (a+a*)/2 we can write

" A (s A
x(t) = )% -eﬂz”f‘"—i-x—z( ) eIt
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Equivalent baseband model

» Combining the channel with the receiver frontend we obtain
wy (0 cos(@epr (D)A/2

xy(® up()

uQ(®

xQ(®

wo® cos@epr(1)A/2

» Observe that all the involved signals are in the baseband

» The same is true for channel filter, noise and phase error
Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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A compact description

» Let us first ignore the effect of the channel: w(¢) =0, h(t) = 6(¢)
» The receiver can invert the frequency shift operation by

i(t) = [x(r) -Ae*f(Zﬂﬂrwm(t))LP

» Using the expression for x(¢) from the previous slide we get
il A ¥ 27 fe 3+ —j2nfe —j2nfe err
a(t) = {2 (x(;)eﬂ et 4 x5 (1)e e f) . e Jfet+9 (l))}

x(1)

= 7A . efj¢err(t) = l/t[(t) +JMQ(t)

LP

» Observe that this expression is equivalent to our earlier result
x(t xo(t) . .
o) = (24 coston () +2 4 sin(0u, 1)

i <XQ2(t)A cos(frr(1) 1 sin<¢err<f>>>
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Compact equivalent baseband model The two equivalent baseband models

wy (t) cos((l)en— (1)A/2

» The effect of the channel filter becomes

h(t . hy® |+
2(0) = (1) +jzo(t) = (1) * % ROp— 0
» Combining these parts and the noise we obtain the simple model —= hQ;t)
A i
w(t) Ee] Perr (0 __Ing
EN 8 :
% h( X ii(t)
t = u
X(t) 5 N \ZJ Q® ? 1
~ wo® co8(Q apr (1)A/2
h(t ; A
a(t) = | x(r) = h(1) + (0| e (t) = wi(t) +jwo(t) ,
2 2 ~ A ] Papr(t)
A won o 5e
» Complex signal notation simplifies expressions significantly %0 5(70 & \X% i)
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M-ary QAM signaling Matched filter receiver

» At the receiver we see the complex baseband signal ii(¢)

» Considering M-ary QAM signals we get
A 5 Gerr(®
2

W(t)

xi(t) =Y, Aup&t—nTy), xo(t)= Y By g(t—nTy) o o %& & -
2

n=—oo Nn=—o0
> Letus now introduce » If we know the channel we can design a matched filter for
Anln] = Ay +JBuin h(t .
m{n] = Auu] +J By Z(t):fc(t)*% = W) =2(Ty—1)
» Then our complex baseband signal x(¢) can be written as » It is often convenient to match ¥(¢) to the pulse g(¢) instead

i) =g (Ts—1) = g["] = [ﬁ(t) * g*(Ts_t)],:(nH)T

K}

0 =u()+ixo) = Y. Aupgli—nTy)

n=—oo

» Example: (on the board)

|
|
| ~
Consider 4-QAM transmissionof b=1011100 1 : alt) | -g*m 5 ><5[”] Decision | 1, »
Determing Ay, Byjy) and Ay VT T L
How can we design the receiver for QAM signals? Tttt |
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Decision rule

» Consider now i(t) = §(¢) and w(t) = 0
» The ideal values of the decision variable are then given by

gm[n] = [ﬁ([) * g*(TS_t)]z:(n-&-l)T

s

_ {(Am[nlg(t—nTs)'emm(t)'A) - g*(Ts_t)}
2 t:(rH»])Ts
_ ) A
= —j Gerr(1) | 2 — 3 (T —
Amfn € 2 [g(f nT;) + g°(T; t)]z:om)n
e*j¢err(("+1)TS) . é

= A 5

Eq

» Due to noise w(r) # 0 and non-ideal channel /(z) the decision
variables at the receiver will differ from these ideal values

» The Euclidean distance receiver will base its decision on the
ideal value &, which is closest to the received value &[i]
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Example: 4-PSK with phase offset

» Consider now a constant phase offset of ¢o, (1) = @orr = 25°
> As a result the values &, and &[n] are rotated accordingly

Im{¢}
Y 7/
N AY )( 7 ’ ~
N e X ideal &
XN ,
N 7 ~
S . received &
/// \\\\‘\)F /I RE’{g}
o s b ---  decision boundary
d ’ ’\’ N Ay
e AY

How can we compensate for ¢,,,?
1. we can rotate the decision boundaries by the same amount
2. or we can rotate back & |[n] by multiplying with e+/%r
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Example: 4-PSK

» Assuming ¢.,-() = 0 we obtain the ideal decision variables

- . A _ A
ém[n] = Am[n] . E E, = (Am[n] +JBm[n]) ! 5 Eg
Im{&}
\‘ N P X ideal §~
N ) received §~
, s an N RC{E}
L N ---  decision boundary

» Based on the received value &[n] we decide for
mn]: Agp = (14j-0)
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Summary: M-ary QAM transmission

» We can describe the transmitted messages A,;,[n] and the
decision variables &[] at the receiver as complex variables

» The effect of the noise i (¢) and the channel filter k(z) on &[n] can
be described by the equivalent baseband model

» The transmitter and receiver frontends can be separated from
the (digital) baseband processing

» Assumptions:
- the pulse shape g(¢) satisfies the ISI-free condition
- the carrier frequency f. is much larger than the bandwidth of g(z)

» Under these conditions the design of the baseband receiver and
its error probability analysis can be applied as in Chapter 4
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