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Discrete time model for ISl Example 6.1
» According to our model the decision variable can be written as The transmitted sequence of amplitudes Ali] is given as,
o Alil
E[]=y(T+iTy) = Z A x(T+iTs—nTy) +we (T +iTy) ¢
, = 1k & N 00 2 2 S
» Let us introduce the discrete sequences L+ 1 dds5d god !
x[i] = x(T+iTS) . We [l] = WL-(T+ iTS) Calculate, and plot, the sequence of decision variables £[i] in Figure 6.2, for 0 <1i <8,

in the noiseless case (i.e. w(t) =0) if to = 0 and if the output pulse z(t) is:
» This leads to the following discrete-time model of our system

i) L=I and x(t) as below. ii) L=2 and x(t) as below.
welil X(t) ()
% € [i] 0 ii mﬂ :
. . Threshold AL
Alil detection mli] . I e t A t
o > i) E[i] = xpA[d] i) Eli] = R A+ 1]+ xoA[i]+ R Ali— 1]
Eli] = Z Aln] x[i — n] +w,[i] = Ali] * x[i] + weli] £l
Remark: the discrete-time impulse response x[i] represents ’ i
pulse shape g(t), channel filter &(¢), and receiver filter v(z) xop ee’®F
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lllustration of ISl in the receiver How much ISI can we tolerate?

30 T _— » We can divide the decision variable £[i] into a desired term
] AR I (message) and an undesired term (interference plus noise)

Individual pulses

A \/ El =A[i]x[0] + Y Aln]x[i —n]+wc[i]
Ty 2T ST 4T, STy T
—_——————
Ts T, message 1SI noise
) 3 g T2 . . .
/\ » The influence of ISI depends on its relative strength
Decision boundaries
Ty T T T T t , |
2 b W o / ISI-free \‘1:
I noise-free |
E01E01ERIEBIE[) i value i
o T[T | | / Aliix(0] |
Messageterm 1 - 1 y el
T, A/ . e | Noise ~ Worst  Worst Noise |
RN \,\V,\f ,<‘é){é///, \/v:’,,‘«\ 1margin case: case: margin |
et ¢ } IS, IsiE }
¢ R A wi?ﬂﬁfgff"};/z
ISI
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Worst case ISI Condition for ISl free reception
> The ISl term can be written as » Let us assume that x[i] satisfies the following condition:
1ST= Y, Alnlsli—n] = Y, Alin]xln] a7y —xosli [0 Ti=0
n=—oo n=—oo x(t] =x("] +115) =xp0|1] = .
e i v 0 ifi#£0
» Question: when does this term become largest? » Then N
» For symmetric M-ary PAM we have max|A[i]| = M — | and get Eli] = Z Aln)x[i —n] +w.[i] = A[i] x[0] +w.]i]
el oo n=—o0
ISI. = max(ISI) = Z max (Ali —n]x[n]) = (M —1) Z |x[n] |
= nere » Otherwise there always will exist some non-zero ISI term
» Similarly, the worst case minimal ISI becomes > For this reason we are interested in signals
i t)=g(t) = h(t t
ISl = min(IST) = —(M 1) Y | x[n]| H1) = 8(t) x ht) « v(1)
i for which the above condition is satisfied

Observe: the worst case ISI occurs for a information sequence

L . Which parts of x(r) can we influence?
Ali] consisting of a particular pattern of (M — 1) values
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Symbol rates for ISl free reception Representation in frequency domain

» Suppose that the ISl free condition is satisfied for symbol rate R} » The discrete sequence x[i] can be obtained by sampling a
> Then it will be satisfied for rates non-causal pulse x.(r) at times i 7,
R, = R? . 0=123,... Hi] =20 (1Ts) - where xe(1) =x(T+1) ,
Example 6.6: » The Fourier transform X’(v) of x[i] can then be expressed in
Consider the overall pulse shape z(t) below, and T = 4/7200. terms of the Fourier transform ch(f) of the Signal xnC(t):
e 1 & vV—n
0 xX(v)= Z xi]e 12ﬂVn:? Z X,,C( T > ,
n=—oo S p=—o0 s
X0
AN AL AN L where
‘ AN

O 7200 ~ —jonft jonf
Xoelf) = [ (02 de = Gl H(P) V() T
Assume the bitrate 14400 [b/s] and 16-ary PAM signaling. Does ISI occur in the

receiver?

Observe: the spectrum of the sampled sequence x[i] consists
of the periodically repeated spectrum of the continuous signal
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Nyquist condition in frequency domain Example 6.7

» Let us now formulate the ISI free condition in frequency domain: Assume that Xne(f) is given below.

xi] =x06[l] =X(v)=F{x[i]}=x Vv

. . . . . Xnc(®
» Choosing v =f T, this leads to the equivalent Nyquist condition
A
X(fTs) _ i _ X0 _ 1
I Y A R

—4000 0 4000

» Let W, denote the baseband bandwidth of x,.(z),

a) Sketch the left hand side of (6.33), > o7 _
ch(f) =0, lf| > Wlp per second.

b) Does ISI occur in the receiver?

Xne(f—nRs), if Rs = 12000 symbols

» Then IS| always will be present if the symbol rate satisfies

Ry > 2 W, What happens if R, = 80007
(non-overlapping spectrum cannot add up to a constant) And R, = 40007

» If we have Ry <2W),:
ISI-free reception is possible if X,.(f) has a proper shape
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Example 6.8 Ideal Nyquist pulse
Assume that Xne(f) is, » The maximum possible signaling rate for ISI-free reception is
Ruyg =Ry = Ti =2W,, (Nyquist rate)

Xnc(f) L . . S . - .
» With ideal Nyquist signaling, the bandwidth efficiency is
A
Ry _ Ryyqlogy(M)
g = —— = ——————- =2log, M =2k [bps/Hz
00 o a0 Pma =y, Ryyq/2 &2 [bps/Hz

» The ideal Nyquist pulse must have rectangular spectrum

A = :E()TS.
‘ Show that there is no ISI if the symbol rate is Ry = 8000 [symbol/s]. XO/Rnyq i V‘Rnyq/z sin(ﬂR,,yq t)
Solution: ch(f) = = ch(t) =X) ——————
0, else TRyt
oo
S Xne(E-n8000)
n=—oo Xne() Xpe(t)
A 1
T T T T T =T
| | | | | X0 /R __1 - R, S
T . T : : T : T : T f[Hz] ek R“yq s %0 e
=16000 -8000 -4000 O 4000 8000 16000 24000 \ /
I = f[Hz] }\/\\/\‘U UV\IV\/\\/\‘\ t
) . ) ) . “Rnyq/2 Rnyq/2 ‘ .
Since Z Xne(f —n8000) = zo/Rs, for all f, there is no ISI in the receiver. ) b |
a
= Rnyq
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Some comments on bandwidth Spectral Raised Cosine Pulses

» The spectral raised cosine pulse shape is defined by the

» Remember: in Chapter 2 we have seen that strictly band-limited .
following spectrum

signals always have to be unlimited in time Xne (D)

» In practice we have to find compromises, which was leading to xoTs B=0
different definitions of bandwidth for time-limited signals e -
Pulse shape | Wigpe | % power Woo Woo Woo.o Asymptotic /
in Wiobe decay 1 1 1 1 f
rec 2/T 90.3 1.70/T | 20.6/T | 204/T - T T 0 T —
tri 4/T 99.7 1.70/T | 2.60/T | 6.24/T —1 § s s Ts
hes 3/T 99.5 1.56/T | 2.36/T | 5.48/T fr R
rc 4/T 99.95 | 1.90/T | 2.82/T | 3.46/T =5 W, p=(1+B) 75
Nyquist R 100 0.9R 0.99Rs | 0.999R, ideal .
» The name refers to the way the shape is composed
» We can see that time-limited signals need at least about twice 1-B
R . x0T , 0< WS 27,
the Nyquist bandwidth o, AT x 1P 1B s
. . L. L. — 20 1Ls s _ v P e <
» For OFDM with many sub-carriers N this is negligible (why?) Xne(f) 2 {1 +COS( B 2B )} oo S W
0 If| > Wi,

» For single-carrier systems, some close-to-Nyquist pulses

are typically used in practice = spectral raised cosine 1 R
where W, = —;;ﬁ =(1+p)5, 0<p<l1
S
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Spectral Raised Cosine Pulses Spectral Root Raised Cosine Pulse

» The parameter 3, 0 < 8 < 1, is called the rolloff factor and can be » When analyzing the Nyquist condition we have considered the
used to smoothly control the bandwidth efficiency output signal of the receiver filter v(z), i.e.,
P = R,  Rjog,M  2log,M 2k Xne(t) = g(t) * h(t) * v(t) = u(t) * v(t)

W, (+B)R/2 1+  1+B

_ _ . » The maiched filter for our receiver structure with delay 7 = LT,
» In time domain the signal can be expressed as

should be equal to
sin(wt/Ts) cos(nft/Ty) v(t) =u(LT;—1)

xnc(t):xo : , —o<t<oo
mt/Ts 11— (2Bt/T)? > As a consequence, we need to choose pulse shape g() and
Xnc(® O receiver filter v(¢) in such a way that
o an /D ok V() = VXe() and (GO H()| = VX ()
SRS ‘ ST ' in order to ensure a raised cosine spectrum for
STy 37T - Ty Ts 2Tg 3Tg 4Ty 5Ts 6T

Xue(f) = GO H()? = V() = X3(f)

» Larger rolloff factors 8 = faster amplitude decay of x,.(¢) + Hence v(1) is a pulse with root-raised cosine spectrum
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Introduction to equalizers Introduction to equalizers
» We have considered the receiver structure CLNeaR |
R EQUALIZER | A
CHANNEL I ]| Threshold !
w(®) ey |

i
® ) i [ ‘
s=_3% Alnlg(tnT9 -h(l) O_ 0 y® \g § [il_| Threshold Al s= = AilgenT,) —af by Zm PO v 0
= S PHO )T ey
detector n=- ! | =T 4T DECISION-FEEDBACK EQUALIZER

instead of tolerating the ISl in the above structure, an equalizer
can be used for removing (or reducing) the effectofisr ...

» Linear equalizer: zero-forcing, MMSE Al I
can be implemented by linear filters, low complexity

» Decision feedback equalizer:
non-linear device with feedback, aims at subtracting the
estimated IS from the signal

-~ t=to+LTs+iTs : Ryl | Agell
Transmitter Channel Receiver e detector i
|
» When ISI occurs this receiver is suboptimal and is no longer a)
equivalent to the ML rule (sequence estimation, Viterbi algorithm) o
» Equalization: iEC;LL’iI%fZiH | N
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