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How can we achieve large data rates? A fundamental limit: channel capacity

: . P » Consider a single-path channel (|H(f)|*> = «?) with finite
> Thebitrate R, can be increased in different ways bandwidth W and additive white Gaussian noise (AWGN) N(1)
» We can select a signal constellation with large M The capacity for this channel is given b
= this typically increases the error probability P pacily 9 y
exception: orthogonal signals (FSK): require more bandwidth W P,
» Achieving equal P; with larger M is possible by increasing &,/No C =Wlog, (1 N W) [bps|
= this reduces the energy efficiency
» We can also increase R, by increasing the bandwidth W
= this does not improve the bandwidth efficiency p = R,/W

v

v

Shannon showed that reliable communication requires that
Ry <C

Question:
what is the largest achievable rate R, for a given error probability Py,
channel quality &£,/Ny and bandwidth W?

v

Observe: the capacity formula does not include P, (why?)

Shannon also showed that if R, < C, then the probability of error
P, can be made arbitrarily small

v

This question was answered by Claude Shannon in 1948:
"A mathematical theory of communication”
Course EITN45: Information Theory (VT2)

Ps—0

if messages are coded in blocks of length N — oo
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Bandwidth efficiency and gap to capacity How does channel coding work?

(p. 369) P » We have seen that a large minimum distance d2,,, between
signals is required to improve the energy efficiency
or o » For binary signaling (M = 2) we have seen that &2, <2
. Epb 27" B
0 dmpossible No T oW Idea of coding:
64-QAM » generate M binary sequences of length N
s 16-QAM 16-PSK » use binary antipodal signaling to create M signals s,(¢)
8-PS 8-PAM
2 QPSK < Example: N =5, M =4, g...(t) pulse with T =T,/N (what is D2, ?)
16 1 _ BPSK ‘ = 10log;(Ep/No) o, 1 0 1 1 o SO0 1 o o
! 0 5 10 15 20 [dB] A '— A
i BESK ‘ f ! f
=1/2 H H
| ! 8-FSK : : : _I .
: ~1/4 16-FSK —A ;
| 32-FSK ssthy 0 0 0 0 0
=178 A
. . . . . . t
» p < C/W: reliable communication is impossible above 4
» this limit can be approached with channel coding
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Increasing d;;, with coding Example: symbol error probability

» In our example we have

107 5
2 2

D;., =4A>T-3=4E,3 = 12E, o ]
» Normalizing by the average energy &, = NE,/k this gives 10° 1
d2 B D%”_n B 12Eg _ 6 k _ 12 B 2 4 n_u) 10-4 uncoded ]
mn 28, 2NJ/kE, N 5 7 105 F 1
» Let dyin,y denote the minimum Hamming distance between the 10°¢ el b 1
binary code sequences = in our example: d,i,n =3 W07k (union bound) ]

» Then we can write . ‘ ‘ ‘ ‘ \ ‘
k 10 0 2 4 6 8 10 12 14 16

dgm‘n =2 ﬁ dmin,H = 2Rdmin,H s Eb/NO [dB]

» Hamming code, N =7, k =4, dyinn =3 = d>;, =3.43
» How can we construct good codes?

EITN70: Channel Coding for Reliable Communication (HT2)

where R =k/N is called the code rate
» Larger d,;».# values can be achieved with larger N
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Multiuser Communication
(p. 395/396) N

User 1: +A ¢,(t)
User 2: TA ¢,(t) s(t) r(t)

User£: #A  4(1)
User N: +A ¢ (1)

A simple model:
» N users transmit at same time with orthonormal waveforms ¢,(r)
» Binary antipodal signaling is used in this example, such that

N
s()=Y Antn(t), A c+A
n=1

» The orthonormal waveforms satisfy

T o i),
/0 ¢i(t)(7”(t)dt_{1 ifi =
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Receiver for Multiuser Communication

RECEIVER FOR
USER £

User 1: A ¢,(t)
User 2: +A ¢,(t)

User2: +A 0 (1)

UserN: tA o —/ b+t 3

» This permits a simple receiver structure for each user ¢
» The decision variable becomes

Ts Ts N
é‘:/o (1) (1) df:/o (1) (%An(bn(tHN(f)) dt

7‘3
ZA[-F/O G()N(t) dt =Ay+ N

= receiver is only disturbed by noise and not by other users!
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Multiuser Communication
» The separation of users can be achieved in different ways
» TDMA: (time-division multiple access)

o0 rpma

T

User £
intime slot 2

» FDMA / OFDMA: (frequency-division multiple access)

t)=c sin(2 nfpyt
0200 n(@ el User 2in

frequency slot £
t
TS
FDMA

» CDMA: (code-division multiple access)

(0] CDMA Each user is
a assigned a
unique pattern of +a's

TS

-a

> MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA 5
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Non-coherent receivers

» With phase-shift keying (PSK) the message m[n] at time nT; is
put into the phase 6, of the transmit signal

s(t) = g(t) V2E cos(2nfot+6,), nTy<t< (n+1)T;

v

The channel introduces some attenuation «, some additive noise
N(r) and also some phase offset v into the received signal

r(t) = a g(t) V2E cos(2mf.t+6,+Vv)+N(1)

v

Challenge: the optimal receiver needs to know o and v
In some applications an accurate estimation of v is infeasible
(cost, complexity, size)

Non-coherent receivers:

receiver structures that can work well without knowledge
of the exact phase offset

v

v

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying Differential Phase Shift Keying (M = 2)

» With differential PSK, the message m[n] = my is mappedtothe o

phase according to Receiver ‘
2nl Delay i
Gn: n—l+7 EZO,,M—I T, - ugn i

&l 20 [~ bin 1]

» The transmitted phase 6, depends on both 6,_; and m|n] )
» This differential encoding introduces memory and the transmitted
signal alternatives become dependent ]

» Example 5.25: binary DPSK
Addition " » The receiver uses no phase offset v in the carrier waveforms
t

modulo 2 » Without noise, the decision variable is

s() 2() a r(t) &n] = re[n]reln— 1]+ rs[n]ryn—1] |

=Acos(6,-1+Vv)Acos(6,,+V)+Asin(6,_1+V)Asin(6,_»+V

=A%cos(6,_1 — 6,_,) = independent of v

» Note: non-coherent reception increases variance of noise
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Intersymbol Interference (ISI) Intersymbol Interference (ISI)
» Consider transmission of a single M-ary PAM signal alternative » For Ry =1/T; < 1/T, we can use the ML receiver from Chapter 4
» Question: can we use such a receiver for larger rates Ry > 1/T,?
R R » Consider the following receiver structure (compare to last slide)
detector m w(t)
sw= § AlnjgnT g (1) 1(t) y(©) € [i]_| Threshold A
Channel Receiver n=Tee - ® § d;?;ctgr = ml
. ~ _ . . t=to+LTs+Ts
» In the noise-free case (w(r) = 0) the signal x(z) can be written as e o o~
Example: x(r) = u(t) * v(t) = g(r) * h(t) * v(1) > Note that z(z) now is a superposition of overlapping pulses u(r)
' () 0 » The signal y(¢) after the receiver filter v(¢) is
a) o0
I vty =Y Alnlx(t—nTy) +we(r)
t T > n=—oo
m’ ¢ Ty ‘ T T, where w,(¢) is a filtered Gaussian process
0 T, T T, T, T » The decision variable is obtained after sampling
. i =y(T+iTy), T=ty+LT;, where LT, <T,
What happens if T, = T, + Tj, > T,? = ISl occurs Sl =x ) 0 ' fe
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Discrete time model for ISI Example 6.1

» According to our model the decision variable can be written as The transmitted sequence of amplitudes A[i] is given as,
o Alil
El =T +iT) =Y, Alnx(T +iTs—nTy) +we(T +iTy) i
, = k2 N 00 2 2 S
» Let us introduce the discrete sequences L+ 1 ddsd god !
x[i] = X(T+iTs) ,  We [l] = Wc(T+ iTs) Calculate, and plot, the sequence of decision variables £[i] in Figure 6.2, for 0 <1 <8,

in the noiseless case (i.e. w(t) =0) if to = 0 and if the output pulse z(t) is:
» This leads to the following discrete-time model of our system

i) L=1 and x(t) as below. ii) L=2and x(t) as below.
weli] X() ()
. . ( ) gl Threshold A b a * i ;
Alil detection m[i] . I e t T t
o > i) E[i] = xoAli] i) E[i] = FA[i+ 1] +x0A[i] + F A[i — 1]
Elil= Y Alnlxli—n]+weli] = Ali] » x[i] + wel] i
n=—oo

Remark: the discrete-time impulse response x[i] represents ’ ;

pulse shape g(t), channel filter &(¢), and receiver filter v(z) xob! 44°0°F
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