

EITG05 – Digital Communications

Week 5, Lecture 1

Gap to Capacity Multiuser Receiver, Non-coherent Receiver Intersymbol Interference

How can we achieve large data rates?

- The bit rate R_b can be increased in different ways
- ▶ We can select a signal constellation with large M \Rightarrow this typically increases the error probability P_s exception: orthogonal signals (FSK): require more bandwidth W
- Achieving equal P_s with larger M is possible by increasing \mathcal{E}_b/N_0 \Rightarrow this reduces the energy efficiency
- We can also increase R_b by increasing the bandwidth W \Rightarrow this does not improve the bandwidth efficiency $\rho = R_b/W$

Question:

what is the largest achievable rate R_b for a given error probability P_s , channel quality \mathcal{E}_{h}/N_{0} and bandwidth *W*?

Digital Communications: Week 5. Lecture 1

This question was answered by Claude Shannon in 1948: "A mathematical theory of communication" Course EITN45: Information Theory (VT2)

Week 5, Lecture 1

Chapter 5: Receivers in Digital Communication Systems - Part II

- Fig. 5.17: gap to capacity
- ► 5.4.3 A simplified model of multiuser communication
- 5.4.5 Differential phase-shift-keying
- Chapter 6: Intersymbol Interference
- 6.1 Increasing the signaling rate ISI

Pages 369, 395 – 396, 400 – 403, and 435 – 446

Exercises: 4.19, 4.21, Example 4.19 on page 279, 4.13, 4.12, Example 4.4 on page 242, 4.18

Michael Lentmaier, Fall 2017

Digital Communications: Week 5 Lecture

- Consider a single-path channel $(|H(f)|^2 = \alpha^2)$ with finite bandwidth W and additive white Gaussian noise (AWGN) N(t)
- The capacity for this channel is given by

$$C = W \log_2 \left(1 + \frac{\mathcal{P}_z}{N_0 W} \right) \text{ [bps]}$$

Shannon showed that reliable communication requires that

 $R_h < C$

- **Observe:** the capacity formula does not include P_s (why?)
- Shannon also showed that if $R_h < C$, then the probability of error P_s can be made arbitrarily small

 $P_s \rightarrow 0$

if messages are coded in blocks of length $N \rightarrow \infty$

Michael Lentmaier, Fall 2017

Bandwidth efficiency and gap to capacity

this limit can be approached with channel coding

Digital Communications: Week 5, Lecture 1

Increasing d_{min}^2 with coding

► In our example we have

$$D_{min}^2 = 4A^2 T \cdot 3 = 4E_g 3 = 12E_g$$

• Normalizing by the average energy $\mathcal{E}_b = N E_g / k$ this gives

$$d_{min}^2 = \frac{D_{min}^2}{2\mathcal{E}_b} = \frac{12E_g}{2N/kE_g} = 6 \cdot \frac{k}{N} = \frac{12}{5} = 2.4$$

- ▶ Let *d_{min.H}* denote the minimum Hamming distance between the binary code sequences \Rightarrow in our example: $d_{min,H} = 3$
- Then we can write

$$d_{min}^2 = 2\frac{k}{N}d_{min,H} = 2Rd_{min,H} ,$$

where R = k/N is called the code rate

• Larger $d_{min H}$ values can be achieved with larger N

How does channel coding work?

- We have seen that a large minimum distance d_{min}^2 between signals is required to improve the energy efficiency
- For binary signaling (M = 2) we have seen that $d_{min}^2 \le 2$

Idea of coding:

- generate M binary sequences of length N
- use binary antipodal signaling to create M signals $s_{\ell}(t)$

Example: N = 5, M = 4, $g_{rec}(t)$ pulse with $T = T_s/N$ (what is D_{min}^2 ?)

Michael Lentmaier, Fall 2017

Digital Communications: Week 5, Lecture 1

• Hamming code, N = 7, k = 4, $d_{min,H} = 3 \Rightarrow d_{min}^2 = 3.43$ How can we construct good codes? EITN70: Channel Coding for Reliable Communication (HT2)

Michael Lentmaier, Fall 2017

Multiuser Communication

(p. 395/396)

N(t)
User 1:
$$\pm A \phi_1(t)$$

User 2: $\pm A \phi_2(t)$
:
User ℓ : $\pm A \phi_\ell(t)$
:
User N: $\pm A \phi_N(t)$

A simple model:

- ► N users transmit at same time with orthonormal waveforms $\phi_{\ell}(t)$
- Binary antipodal signaling is used in this example, such that

$$s(t) = \sum_{n=1}^{N} A_n \phi_n(t) , \quad A_n \in \pm A$$

The orthonormal waveforms satisfy

$$\int_0^{T_s} \phi_i(t) \phi_j(t) dt = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 5, Lecture 1

Receiver for Multiuser Communication

- \blacktriangleright This permits a simple receiver structure for each user ℓ
- The decision variable becomes

$$\begin{aligned} \xi &= \int_0^{T_s} \phi_\ell(t) \, r(t) \, dt = \int_0^{T_s} \phi_\ell(t) \left(\sum_{n=1}^N A_n \, \phi_n(t) + N(t) \right) \, dt \\ &= A_\ell + \int_0^{T_s} \phi_\ell(t) N(t) \, dt = A_\ell + \mathcal{N} \end{aligned}$$

 \Rightarrow receiver is only disturbed by noise and not by other users!

Multiuser Communication

- > The separation of users can be achieved in different ways
- TDMA: (time-division multiple access)

FDMA / OFDMA: (frequency-division multiple access)

CDMA: (code-division multiple access)

MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA

```
Michael Lentmaier, Fall 2017
```

Digital Communications: Week 5, Lecture 1

Non-coherent receivers

With phase-shift keying (PSK) the message m[n] at time nT_s is put into the phase θ_n of the transmit signal

 $s(t) = g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n)$, $nT_s \le t \le (n+1)T_s$

The channel introduces some attenuation α, some additive noise N(t) and also some phase offset v into the received signal

 $r(t) = \alpha g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n + v) + N(t)$

- Challenge: the optimal receiver needs to know α and v
- In some applications an accurate estimation of v is infeasible (cost, complexity, size)
- Non-coherent receivers:

receiver structures that can work well without knowledge of the exact phase offset

How can we modify our PSK transmission accordingly?

Differential Phase Shift Keying

• With differential PSK, the message $m[n] = m_{\ell}$ is mapped to the phase according to

$$heta_n = heta_{n-1} + rac{2 \pi \ell}{M}$$
 $\ell = 0, \dots, M-1$

- The transmitted phase θ_n depends on both θ_{n-1} and m[n]
- This differential encoding introduces memory and the transmitted signal alternatives become dependent
- **Example 5.25:** binary DPSK

Michael Lentmaier, Fall 2017

Intersymbol Interference (ISI)

• Consider transmission of a single *M*-ary PAM signal alternative

▶ In the noise-free case (w(t) = 0) the signal x(t) can be written as

x(t) = u(t) * v(t) = g(t) * h(t) * v(t)Example: g(t) Тg 0 $T_{a} + T_{h}$ T_u + T_y What happens if $T_u = T_g + T_h \ge T_s$? \Rightarrow ISI occurs Digital Communications: Week 5. Lecture

Differential Phase Shift Keying (M = 2)

- The receiver uses no phase offset v in the carrier waveforms
- Without noise, the decision variable is

$$\xi[n] = r_c[n] r_c[n-1] + r_s[n] r_s[n-1]$$

 $= A\cos(\theta_{n-1} + v) A\cos(\theta_{n-2} + v) + A\sin(\theta_{n-1} + v) A\sin(\theta_{n-2} + v)$

 $=A^2\cos(\theta_{n-1}-\theta_{n-2}) \Rightarrow \text{independent of } v$

Note: non-coherent reception increases variance of noise

```
Michael Lentmaier, Fall 2017
```

```
Digital Communications: Week 5, Lecture 1
```


Intersymbol Interference (ISI)

- For $R_s = 1/T_s < 1/T_u$ we can use the ML receiver from Chapter 4
- Question: can we use such a receiver for larger rates $R_s > 1/T_u$?
- Consider the following receiver structure (compare to last slide)

- Note that z(t) now is a superposition of overlapping pulses u(t)
- The signal v(t) after the receiver filter v(t) is

$$y(t) = \sum_{n=-\infty}^{\infty} A[n] x(t-nT_s) + w_c(t) ,$$

where $w_c(t)$ is a filtered Gaussian process

The decision variable is obtained after sampling

$$\xi[i] = y(\mathcal{T} + iT_s)$$
, $\mathcal{T} = t_0 + LT_s$, where $LT_s \leq T$

Michael Lentmaier, Fall 2017

Michael Lentmaier, Fall 2017

Discrete time model for ISI

According to our model the decision variable can be written as

$$\xi[i] = y(\mathcal{T} + iT_s) = \sum_{n=-\infty}^{\infty} A[n]x(\mathcal{T} + iT_s - nT_s) + w_c(\mathcal{T} + iT_s)$$

► Let us introduce the discrete sequences

$$x[i] = x(\mathcal{T} + iT_s)$$
, $w_c[i] = w_c(\mathcal{T} + iT_s)$

This leads to the following discrete-time model of our system

$$A[i] \longrightarrow x[i] \longrightarrow (+) \xrightarrow{k} [i] \xrightarrow{w_c[i]} \xrightarrow{w_c[i]} \xrightarrow{m[i]} m[i]$$

$$\xi[i] = \sum_{n = -\infty}^{\infty} A[n] x[i - n] + w_c[i] = A[i] * x[i] + w_c[i]$$

Remark: the discrete-time impulse response x[i] represents pulse shape g(t), channel filter h(t), and receiver filter v(t)

Michael Lentmaier, Fall 2017

Digital Communications: Week 5, Lecture 1

Example 6.1

The transmitted sequence of amplitudes A[i] is given as,

Calculate, and plot, the sequence of decision variables $\xi[i]$ in Figure 6.2, for $0 \le i \le 8$, in the noiseless case (i.e. w(t) = 0) if $t_0 = 0$ and if the output pulse x(t) is:

i)
$$\xi[i] = x_0 A[i]$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 5, Lecture 1