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M-ary Signaling4.3. The Minimum Euclidean Distance Receiver 241

m̂

Ts

0
(   )dt +

Ts

0
(   )dt +

SELECT
LARGEST

ξ1

ξ0

ξM-1

{z  (t)} =0
M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0
(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

Figure 4.8: The minimum Euclidean distance receiver, see (4.33).

EXAMPLE 4.3
Assume in Figure 4.8 that M = 2, and that the received signal alternatives z0(t) and
z1(t) are,

z  (t)0 z  (t)1

Ts Ts

A A

-A

tt

Furthermore, assume a noisefree situation, and also that r(t) = z0(t) (i.e. message m0

is sent).
Calculate the decision variables �0 and �1 in Figure 4.8.

Solution:

�0 =
Ts

0

r(t)z0(t)dt � E0

2
=

Ts

0

z2
0(t)dt � E0

2
=

E0

2
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2
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r(t)z1(t)dt � E1

2
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z0(t)z1(t)dt � E1

2
= �E1

2
= �A2Ts

2

Note the relatively large di�erence between the decision variables �0 and �1. It is clear
that a correct decision is made in this noisefree situation since �0 > �1. Also observe
that if r(t) = z�(t), then the output from the �:th correlator equals E�. �

Figure 4.8 shows the receiver implementation for an arbitrary received signal
constellation {z�(t)}M�1

�=0 . However, for several signal constellations, Figure 4.8

I The receiver computes M decision variables x

0

,x
1

, . . . ,x
M�1

I The selected message m̂ is based on the largest value

m̂ = m` , ` = argmax

i

x

i

I
Question: when do we make a wrong decision?
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Probability of a wrong decision

I For M = 2 we have considered two error probabilities P

F

and P

M

I For a given message m = m

j

, in general there are M �1 ways
(events) to make a wrong decision,

�
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��
m = m

j

 
, i 6= j

I The probability of a wrong decision can be upper bounded by

Pr{m̂ 6= m

j
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(union bound)

I Note: given some events A and B, the union bound states that

Pr{A[B}  Pr{A}+Pr{B} ,

where equality holds if A and B are independent
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Symbol error probability

I The symbol error probability can be upper bounded by
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I From the binary case M = 2 we know that (pick i = 0 and j = 1)
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where D

i,j is the Euclidean distance between z

i

(t) and z

j

(t)
I We obtain the following main result for M-ary signaling:
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Example: orthogonal signaling

I Consider M orthogonal signals with equal energy E

I Examples: FSK, PPM

I For each pair z

i

(t) and z

j

(t) we get

D

2

i,j = E +E = 2E

I From the union bound we obtain

P
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◆

I This generalizes the binary case from the previous lecture
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Distances D

i,j are important

I
P

s

is determined by the distances D

i,j between the signal pairs
I Let us sort these distances

D
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< · · · < D
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I Then the upper bound on P

s

can be written as

P

s

 c Q

0

@
s

D

2

min

2N

0

1

A+ c

1

Q

0

@
s

D

2

1

2N

0

1

A+ · · ·+ c

x

Q

0

@
s

D

2

max

2N

0

1

A

I The coefficients are

c` =
M�1

Â
j=1

P

j

·n

j,` , ` = 0,1,2, . . . ,x

I
n

j,`: number of signals at distance D` from signal z

j

(t)

How many distinct terms do exist for 4-PAM?
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A useful approximation of P

s

I The union bound is easy to compute if we know all distances D`

I At large signal-to-noise ratio (small N

0

), i.e., when P

s

is small, the
first term provides a good approximation

P

s

⇡ c Q

0

@
s
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2

min
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A

I We see that the minimum distance D

2

min

and the average number
of closest signals c dominate the performance in this case

I
Explanation:

the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

) at small P

s

(small N

0

) we can compare different signal
constellations by means of D

2

min

, similarly to the binary case

Michael Lentmaier, Fall 2017 Digital Communications: Week 4, Lecture 2



Energy efficiency and normalized distances

I Consider the case P` = 1/M, ` = 0,1, . . . ,M �1

I The average received energy per bit is given by
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I Using the normalized squared Euclidean distances
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I The parameters d

2

` determine the energy efficiency
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Example 4.19
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where

d2
min = D2

min
2Eb

(4.117)

and

d2
� =

D2
�

2Eb
, ` = 1, 2, . . . (4.118)

For a su�ciently large signal-to-noise ratio Eb/N0 only the first term, which
contains the normalized squared minimum Euclidean distance d2

min, is
numerically significant. This parameter is sometimes also referred to as the
normalized squared free Euclidean distance.

The energy e�ciency for a specific signal constellation {z�(t)}M�1
�=0 is often

measured by the parameter d2
min, see Example 4.19, and Table 4.1 on page 281.

A common reference value is d2
min = 2 and this is obtained for binary antipodal

signaling, and for QPSK.

EXAMPLE 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2

min,A and d2
min,B. From the equality (see e.g. the dominating term in the

union bound),
d2
min,AEb,A/N0 = d2

min,BEb,B/N0

we find that the di�erence (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B) � 10 log10(Eb,A) = 10 log10

d2
min,A

d2
min,B

Calculate the value 10 log10

d2
min,A

d2
min,B

if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.
Which signal constellation is most energy e�cient based on d2

min (i.e. at large signal-
to-noise ratios Eb/N0)? Use Table 4.1 on page 281.

Solution:
From Table 4.1 we find for M-ary PAM that d2

min = 6 log2(M)
M2�1

So, d2
min,A = 2, d2

min,B = 4
5

10 log10

d2
min,A

d2
min,B

= 10 log10

5
2

= 3.98[dB]

Hence, binary antipodal PAM is 3.98 dB more energy e�cient than 4-ary
PAM.

�

As an additional exercise for the reader we here give, without proof, the union
bound for the M-ary PAM case considered in Subsection 2.4.1.1,

Ps 
M�2�

i=0

2(M � 1 � i)

M
Q

✓
(i + 1)

q
d2
minEb/N0

◆
(4.119)

I For M-ary PAM we have (Table 4.1 or Table 5.1)

d

2

min

= 6log

2

(M)/(M2 �1) ) d

2

min,A = 2, d

2

min,B = 4/5

I
10log

10

d

2

min,A/d

2

min,B = 10log

10

5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons

5.2. Comparisons 361

as M is increased, in contrast to the results in Figures 5.13–5.15. However, as we
know from Chapter 2, this improvement in energy e�ciency (or “coding gain”)
for M-ary FSK is obtained at the cost of an increased bandwidth consumption.

Pb Q
⇣q

d2
min

Eb
N0

⌘
, (4.55)

M = 2 d2
min 0  d2

min  2, (4.57)
� �bin , (2.21)

Ps 2
�
1 � 1

M

�
Q

⇣q
d2
min

Eb
N0

⌘
, (5.35)

M-ary PAM d2
min

6 log2(M)
M2�1 , Table 4.1 on page 281, (2.50)

� �2�PAM · log2(M), (2.220)

Ps < 2Q
⇣q

d2
min

Eb
N0

⌘
, (5.43)

M-ary PSK d2
min 2 sin2(�/M) log2(M), Table 4.1, Fig. 5.11
� �BPSK · log2(M), (2.229)

M-ary QAM Ps 4
⇣
1 � 1�

M

⌘
Q

⇣q
d2
min
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N0

⌘
�

(rect., k even) �4
⇣
1 � 1�

M

⌘2
Q2

⇣q
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min

Eb
N0

⌘
, (5.50)

(QPSK with d2
min

3 log2(M)
M�1 , Table 4.1, Subsection 2.4.5.1

M = 4) � �BPSK · log2(M), (2.229)

M-ary FSK Ps  (M � 1)Q
⇣q

d2
min

Eb
N0

⌘
, Example 4.18c, Table 4.1

(orthogonal d2
min log2(M), Table 4.1 on page 281

FSK) � See (2.245)

M-ary bi- Ps  (M � 2)Q
⇣q

d2
min

Eb
N0

⌘
+

orthogonal +Q
⇣q

2d2
min

Eb
N0

⌘
, (5.53)

signals d2
min log2(M) if M � 4, (5.51)

� �M-bi-ort = �M/2 -ort · log2(M)
log2(M/2) , (5.52)

Table 5.1: Symbol error probability and bandwidth e�ciency results.

Table 5.1, p. 361
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Symbol error probability comparison

362 Chapter 5. Receivers in Digital Communication Systems - Part II
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Figure 5.13: The symbol error probability for M-ary PAM, M = 2, 4, 8, 16,
see Table 5.1. The specific assumptions are given in Subsection 2.4.1.1, and in
Subsection 5.1.3.
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Figure 5.14: The symbol error probability for M-ary PSK, M = 2, 4, 8, 16, 32,
see Table 5.1. In this figure upper bounds are denoted (ub). See also Subsection
5.1.5.
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Symbol error probability comparison
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Figure 5.15: The symbol error probability for M-ary QAM, M = 4, 16, 64, 256,
see Table 5.1. The specific assumptions are given in Subsection 2.4.5.1 and in
Subsection 5.1.6. The bit error probability for BPSK is also given as a reference
(= Q(

p
2Eb/N0)).
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Figure 5.16: Upper bound (the union bound) on the symbol error probability for
orthogonal equal energy M-ary FSK signal alternatives, M = 2, 4, 8, 16, 32, 64,
see Table 5.1 and Example 4.18c. The result given for the binary case is exact
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Gain in d

2

min

compared with binary antipodal

364 Chapter 5. Receivers in Digital Communication Systems - Part II

Antipodal M = 2 0[dB]
Orthogonal M = 2 -3.01

M = 2 0
M = 4 -3.98

M-ary PAM M = 8 -8.45
M = 16 -13.27
M = 32 -18.34
M = 64 -23.57
M = 2 0
M = 4 0

M-ary PSK M = 8 -3.57
M = 16 -8.17
M = 32 -13.18
M = 64 -18.40
M = 4 0
M = 16 -3.98

M-ary QAM M = 64 -8.45
M = 256 -13.27
M = 1024 -18.34
M = 4096 -23.57
M = 2 -3.01
M = 4 0

M-ary FSK M = 8 1.76
M = 16 3.01
M = 32 3.98
M = 64 4.77
M = 2 0

M -ary M = 4 0
bi- M = 8 1.76
orthogonal M = 16 3.01

M = 32 3.98
M = 64 4.77

Table 5.2: Gain in d2
min compared with binary antipodal signaling.

To obtain a measure of the energy (power) e�ciency, at least at large Eb/N0,
let us calculate the gain in d2

min compared with binary antipodal signaling (for
which d2

min = 2). In Table 5.2 this gain is listed (in [dB]),

10 log10(d
2
min/2) (5.54)

for di�erent signal constellations. Note the severe losses in energy e�ciency
for M-ary PAM, M-ary PSK and M-ary QAM if M is large. Furthermore, the
numerical values in Table 5.2 can be used to compare di�erent schemes. For
example, it is seen that 8-ary PSK is asymptotically 4.88 dB better than 8-ary
PAM, but 3.57 dB worse than QPSK, and 5.33 dB worse than 8-ary FSK.

However, some caution is recommended here when comparing, on the basis of
d2
min only, the energy e�ciency of constellations with large di�erences in the

so-called “error coe�cient” c (c is the constant in the dominating term in the
union bound). In such cases, especially at “intermediate” signal-to-noise ratios
Eb/N0, both d2

min and c must enter into the evaluation of the energy e�ciency.
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To obtain a measure of the energy (power) e�ciency, at least at large Eb/N0,
let us calculate the gain in d2

min compared with binary antipodal signaling (for
which d2

min = 2). In Table 5.2 this gain is listed (in [dB]),

10 log10(d
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for di�erent signal constellations. Note the severe losses in energy e�ciency
for M-ary PAM, M-ary PSK and M-ary QAM if M is large. Furthermore, the
numerical values in Table 5.2 can be used to compare di�erent schemes. For
example, it is seen that 8-ary PSK is asymptotically 4.88 dB better than 8-ary
PAM, but 3.57 dB worse than QPSK, and 5.33 dB worse than 8-ary FSK.

However, some caution is recommended here when comparing, on the basis of
d2
min only, the energy e�ciency of constellations with large di�erences in the

so-called “error coe�cient” c (c is the constant in the dominating term in the
union bound). In such cases, especially at “intermediate” signal-to-noise ratios
Eb/N0, both d2

min and c must enter into the evaluation of the energy e�ciency.

Large values M reduce energy efficiency
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Example scenario: M-ary QAM

I We want to ensure that P

s

 P

s,req

, where for M-ary QAM

P

s

 4 Q

 r
d

2

min

E
b

N

0

!
= 4 Q

⇣p
X
⌘

, d

2

min

= 3 log

2

M

M �1

I The pulse shape g(t) is chosen such that

r = log

2

(M) r

BPSK

, where r =
R

b

W

 d

2

min

X · P
z

N

0

W

I Combining these requirements we obtain

M  1+
3

X r

BPSK

· P
z

N

0

W

= 1+
3

X · P
z

T

s

N

0

I Hence we want to choose M = 2

k such that (QAM: k even)

2

k  1+
3

X r

BPSK

· P
z

N

0

W

< 2

k+2
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Example 4.22: adapting M to channel quality

4.5. M-ary Signaling 285

is needed. This may be accomplished by sending a known signal (sometimes
referred to as a so-called pilot signal) from the transmitter, which is used by the
receiver to estimate Pz. If the transmitter is silent, then N0 may be estimated
by the receiver. Measurement information is then sent back from the receiver to
the transmitter.

EXAMPLE 4.22
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that �BPSK = 1/2
[bps/Hz].

Solution:
M-ary QAM:
From (4.134) we obtain that if M is chosen to be M = 2k then,

(2k � 1)
X
6

� SNRr =
Pz

N0W
< (2k+2 � 1)

X
6

where k = 2, 4, 6, 8. Hence,

M = 4 if 3X/6 � SNRr < 15X/6
M = 16 if 15X/6 � SNRr < 63X/6
M = 64 if 63X/6 � SNRr < 255X/6
M = 256 if 255X/6 � SNRr < 1023X/6

See sketch below.
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Note that if we also require a reduced symbol error probability, then X is increased and
this may imply a reduced M (i.e. a reduced Rb) at a given value of SNRr = Pz/N0W .
The symbol error probability is here upper bounded by

Ps � 4Q
d2
min

�
· SNRr = 4Q

3
(M � 1)�BPSK

· SNRr � Ps,req = 4Q(
�

X )

�
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Depending on the channel quality we can achieve different
bit rates R

b

= W, 2W, 3W, or 4W[bps]
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Signal Space Representation

5.1. The MAP Receiver for the AWGN Channel 331

In Figure 5.2 examples of these signal constellations are shown in signal space,
for di�erent values of M . Note that for M-ary PSK the signal points lie on a
circle with radius

p
Ēs =

p
Eg/2.
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Figure 5.2: Examples of M-ary PAM, M-ary PSK, M-ary FSK and M-ary QAM
signal constellations in signal space. See also the corresponding subsections in
Chapter 2.

To be able to calculate the average received symbol energy for the signal con-
stellation {z�(t)}M�1

�=0 , the energy of the individual signals zj(t) first has to be
calculated,

Ej =

Z Ts

0
z2

j (t)dt (5.5)

However, there exists an alternative way to obtain the energy Ej directly from
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To be able to calculate the average received symbol energy for the signal con-
stellation {z�(t)}M�1

�=0 , the energy of the individual signals zj(t) first has to be
calculated,

Ej =

Z Ts

0
z2

j (t)dt (5.5)

However, there exists an alternative way to obtain the energy Ej directly from

�1(t) =
g(t)p

Eg

�1(t) =
g(t) cos(2� fc t)p

Eg/2

�2(t) =
g(t) sin(2� fc t)p

Eg/2
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A geometric description

I As we have seen in Chapter 2 we can represent our signal
alternatives z

j

(t) as vectors (points) in signal space

z
j

=
�
z

j,1
�

=
�
A

j

p
E

g

�
PAM

z
j

=
�
z

j,1 z

j,2
�

=
⇣

A

j

q
E

g

2

B

j

q
E

g

2

⌘
QAM, PSK

I The signal energy can be written as

E

j

=
Z

T

s

0

z

2

j

(t) dt = z

2

j,1 + z

2

j,2

I Likewise, the squared Euclidean distance becomes

D

2

i,j =
Z

T

s

0

�
z

i

(t)� z

j

(t)
�

2

dt = (z
i,1 � z

j,1)
2 +(z

i,2 � z

j,2)
2

Signal energies and distances have a geometric interpretation

Michael Lentmaier, Fall 2017 Digital Communications: Week 4, Lecture 2

Bit errors vs symbol errors

I Assume that S symbols are transmitted and S

err

are in error
I If a symbol m̂ 6= m is decided, this causes at least 1 bit error and

at most k = log

2

M bit errors
S

err

 B

err

 k S

err

I This leads to the following relationship between P

b

and P

s

:

P

s

k

=
E{S

err

}
S · k

 P

b

 E{S

err

· k}
S · k

= P

s

I
P

s

depends on the signal constellation only
I The exact P

b

depends on the mapping from bits to messages m`

and hence signal alternatives s

m`(t)

Example: Which mapping is better for 4-PAM? (and why?)

(1) m

0

= 00, m

1

= 11, m

2

= 01, m

3

= 10

(2) m

0

= 00, m

1

= 01, m

2

= 11, m

3

= 10
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Gray code mappings

I We have seen that for small N

0

we can approximate

P

s

⇡ c Q

0

@
s

D

2

min

2N

0

1

A

I This motivates the use of Gray code mappings:

Example:

16-QAM

4.7. Problems 301

1) Calculate the parameter y in the receiver above, and explain how
it depends on the information sent from the three users.
Also suggest a reasonable decision unit.

2) If an ML receiver for user 2 is used how good will it perform in
terms of bit error probability?

3) Calculate the bandwidth, and the power spectral density for each
user.
If possible, modify the system such that the bandwidth for each
user is decreased.

4.22 Gray-coding means that signal alternatives which are “close” to each
other (in the D2

i,j sense) represent bit-patterns di�ering in only one posi-
tion. Consider 8-ary signaling with z�(t) = (�7 + 2`)g(t), ` = 0, 1, . . . , 7.

a) Are the following mappings (I, II, III) Gray-coded?

z0(t) z1(t) z2(t) z3(t) z4(t) z5(t) z6(t) z7(t)
I: 000 001 010 011 100 101 110 111

II: 000 001 011 010 110 100 101 111
III: 000 010 110 111 011 001 101 100

b) Explain why Gray-coding is to be preferred.

c) Is Gray-coding used in the 16-ary QAM constellation below?

1000 1001 1011 1010

1100 1101 1111 1110

0100 0101 0111 0110

0000 0001 0011 0010

z8 z9 z11 z10

z12 z13 z15 z14

z4 z5 z7

z3

z6
-3a -a a 3a φ1

φ2

z0 z1 z2

3a

a

4.23 In a 4-ary PAM communication system the possible received signal alter-
natives in 0  t  Ts are z�(t) = A�g(t), where the energy in the pulse
shape g(t) equals 2 ·10�6 [V2s] and where A� = �3+2`, ` = 0, 1, 2, 3. The
first part of a correlator based receiver is shown below.
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Receiver for linear filter channel model

I In Chapter 3 we have introduced the model

z`(t) = s`(t)⇤h(t) ,

where h(t) denotes the impulse response of the channel filter
I For a simple channel with a direct transmission path only

h(t) = a d (t) ) z`(t) = a s`(t)

I In case of multipath propagation the channel filter can change
the shape and duration of the signals z`(t)

I It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

z`(Ts

� t) , h(T
h

� t) , s`(Tmax

� t) , T

s

= T

max

+T

h

I The channel matching filter h(T
h

� t) simplifies the
implementation of the receiver
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ML receiver with channel matching filter288 Chapter 4. Receivers in Digital Communication Systems – Part I

+

+

+

+

s        (T       -t)M-1 max

s  (T       -t)max0

s  (T       -t)max1
ξ [n]1

ξ [n]0

SYNCHRONIZATION

t=(n+1)Ts

m[n]^
h(t)

m[n](t-nT  )szsm[n] s(t-nT  )

h(T  -t)h
r(t)

. .
 .

LARGEST
SELECT

R E C E I V E R
-E  /20

-E  /21N(t)

-E       /2

ξ [n]

M-1

M-1

Figure 4.17:
An implementation of the minimum Euclidean distance receiver (i.e. the ML
receiver), including an explicit channel matching filter h(Th � t). The energy E�

is the same as in Figures 4.8–4.9, and it is associated with z�(t) = s�(t) ⇤ h(t).

If the channel is a so-called three-ray channel, then

h(t) = �1�(t � �1) + �2�(t � �2) + �3�(t � �3) (4.145)

Consequently, the transmitted signal reaches the receiver through three trans-
mission paths, each with di�erent gain � and delay � . The channel matching
filter is in this case (assuming �1  �2  �3, and Th = �3),

h(Th � t) = h(�3 � t) =

= �1�(�3 � t � �1) + �2�(�3 � t � �2) + �3�(�3 � t � �3) =

= �3�(t) + �2�(t � (�3 � �2)) + �1�(t � (�3 � �1)) (4.146)

The three-ray channel, and an implementation of the channel matching filter are
illustrated in Figure 4.18.

Example 4.23 illustrates the importance of channel knowledge in the receiver.
In this example, 4-ary PAM is considered.
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Example: three-ray channel

I Consider a channel with three signal paths

h(t) = a

1

d (t � t

1

)+a

2

d (t � t

2

)+a

3

d (t � t

3

)

I Assuming t

1

< t

2

< t

3

we have T

h

= t

3

I The channel matching filter becomes

h(T
h

� t) = h(t
3

� t)

= a

3

d (t)+a

2

d (t � (t
3

� t

2

))+a

1

d (t � (t
3

� t

1

))

RAKE receiver structure:

4.6. A Receiver Structure for the Linear Filter Channel Model 289

s      (t-nT  )m[n] α1δ(t-τ1)

α2δ(t-τ2)

α3δ(t-τ3) Delay
τ3-τ2

Delay
τ3-τ1

α1

α2

α3

r(t) To matched
filters

Channel matching
filter h(T  -t)

N(t)

Three-ray channel

s

h

Figure 4.18: Illustrating the three-ray channel, and the corresponding channel
matching filter h(Th � t), Th = �3 � �2 � �1. This receiver structure is also
referred to as a RAKE receiver structure. See also Figure 4.17.

EXAMPLE 4.23
Assume that the transmitter uses 4-ary PAM signal alternatives: s0(t) = �3g(t),
s1(t) = �g(t), s2(t) = g(t), and s3(t) = 3g(t). Furthermore, the channel h(t) is
assumed to be h(t) = ��(t) = � 1

3 �(t). Hence, the received signal alternatives are
z�(t) = �s�(t)/3, � = 0, 1, 2, 3.

Let us here also assume that the receiver ignores the e�ect of the channel h(t), i.e,
assume that the receiver is designed to be ML for the case � = 1 (and AWGN). Hence,
this receiver compares the received signal r(t) with the signal alternatives {s�(t)}3

�=0!

If the noise is zero, then this receiver always makes symbol error decisions
(i.e. Ps = 1)!

Verify this statement!

Solution:
The noise is here N(t) = 0.

If message m0 is sent, then r(t) = z0(t) = g(t) and the receiver finds that r(t) is closest
to s2(t). Hence, the decision of the receiver is m̂ = m2 �= m0.

If message m1 is sent, then r(t) = z1(t) = g(t)/3 and the receiver finds that r(t) is
closest to s2(t). Hence, the decision is m̂ = m2 �= m1.

In the same way we obtain that the decision of the receiver is m̂ = m1 if r(t) = z2(t) =
�g(t)/3, or if r(t) = z3(t) = �g(t).

So, this receiver always makes symbol error decisions if the noise is zero!

Comment:
It is seen in this 4-ary PAM example that if the influence of the channel h(t) is not
considered in the receiver, then a non-acceptable performance is obtained! As we know
from this chapter (see, e.g., Figure 4.8 on page 241) the receiver should compare r(t)
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