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M-ary Signaling Probability of a wrong decision

P » For M =2 we have considered two error probabilities Pr and Py
» For a given message m = mj, in general there are M — 1 ways

B2 |
} % } (events) to make a wrong decision,
()dt —= I
0 Ei2 : {§i>§j}m:mj}, i#j
Ty |
J O %& seEcr [T » The probability of a wrong decision can be upper bounded by
“ ® 0 : LARGEST | !
) Y ewan | . M
= . | Pr{in # mjlm =m;} = Pr U§i>§j’m=mj
M-1 | =
g( )t |—= : l[_#?

M—1
<Y Pr{&>¢& | m=m} (union bound)
» The receiver computes M decision variables &y, &, ..., En_1 =9
» The selected message 7 is based on the largest value » Note: given some events A and B, the union bound states that

A

m=my, (= argmax & Pr{AUB} < Pr{A}+ Pr{B} ,

» Question: when do we make a wrong decision? where equality holds if A and B are independent
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Symbol error probability
» The symbol error probability can be upper bounded by

M-1 M-1
P< Y P Y Pri&>& | m=m}
j=0 =0
i
» From the binary case M = 2 we know that (pick i =0 andj = 1)

2

D2,
Pri&>&|m=m}=0 21%

where D;; is the Euclidean distance between z;(¢) and z;(r)
» We obtain the following main result for M-ary signaling:

IZJ M—1 M-1 DIZJ
max < P, < P;
;__Q e | S s_j;)/;,)Q N,
7 i

Michael Lentmaier, Fall 2017 Digital Communications: Week 4, Lecture 2

Distances D, ; are important

» P, is determined by the distances D, ; between the signal pairs
» Let us sort these distances

Dyin <Dy <Dy < -+ < Dpax

» Then the upper bound on P, can be written as

D2, D} D;
Pr<eQ|\ghe |t @ ﬁ ot O S

» The coefficients are
M—1
co=Y Py, £=01,2,.. x
j=1

» nj . number of signals at distance D, from signal z;(¢)
How many distinct terms do exist for 4-PAM?
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Example: orthogonal signaling

» Consider M orthogonal signals with equal energy E
» Examples: FSK, PPM

» For each pair z;(¢) and z;(r) we get
D;j=E+E=2E
» From the union bound we obtain

M—1 M-1 D2.
ij

2No

—(Ml)Q(\/g>—(M1)Q<\/NTO)

» This generalizes the binary case from the previous lecture
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A useful approximation of P;

» The union bound is easy to compute if we know all distances D,

» At large signal-to-noise ratio (small Ny), i.e., when P; is small, the
first term provides a good approximation

D2,
P;~cQ —2]"\%’

» We see that the minimum distance D2 and the average number

min

of closest signals ¢ dominate the performance in this case

» Explanation:
the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

= at small P, (small Ny) we can compare different signal
constellations by means of D2, , similarly to the binary case

min’
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Energy efficiency and normalized distances Example 4.19
) Assume two signal constellations, denoted A and B respectively, with corresponding
» Consider the case Py= l/M, l= 0,1,...,.M—1 parameters deiy o and deiy p. From the equality (see e.g. the dominating term in the

» The average received energy per bit is given by union bound), o 2Eon/No = dn € /N
min,ACb,A /N0 = Qmin, BEH, B/ N0

we find that the difference (in dB) in receiwed energy per information bit is (compare

M—1
51;:1 i TSZZ(f) dt = l Eo+ B+ By with (2.13) on page 16),
k=M ™ k M 2.

1010g;o(E,5) — 1010g;(Es,a) = 101og, ((;;m,/l)

» Using the normalized squared Euclidean distances min, B

2 D% Calculate the value 10log,, (—ﬁj’z’“""‘) if “A” is binary antipodal PAM, and if “B” is
—_ —_—— ‘min, B
i = 28, ’ 4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

the union bound can be written as » For M-ary PAM we have (Table 4.1 or Table 5.1)

2 2 2 2
Poceo(\ @y ) rero( @ ) b0 |, 2 Ay = Ology (M)/(M? = 1) = dyp =2, Ay =4/5
0 0 0

> 1010g10d,%mA/d,%1m73 = 10log;(5/2 =3.98 dB
» The parameters d7 determine the energy efficiency '
Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons Symbol error probability comparison
P |Q (\/dfniu £, (4.55) o ‘ , ‘ ‘
M=2 dxznin 0< dfnin <2, (457) : ; Mty PSK

M-ary PAM

14 Pbin (221)

P 2(1-4)Q (b £) (5:39)

M-ary PAM | &2, | ©2&P7 "Table 4.1 on page 281, (2.50)
p__| pa—pan -logy(M), (2.220)

P | <2Q(\/@,, ), (543)

M-ary PSK d> 2sin®(7/M) log, (M), Table 4.1, Fig. 5.11

M =8 (ub) \M = 16 (ub) \M = 32 (ub)

Symbol error probability

p_| popsi -log,(M). (2.229) |

- / I 2 &) ; | | e |
Meary QAM | Po | 4(1- ) Qz(\/d““" &) ) a4
(rect., k even) —4 <1 - ﬁ) Q? (, [d2. 1%)) , (5.50)
(QPSK with . % , Table 4.1, Subsection 2.4.5.1 M-ary PAM, M =2,4,8,16 M-ary PSK, M =2,4,8,16,32
M= 1) b pnrsi Togy(01), (2.399) log, 11 o,
Mary FSK | P, | <(M-1)Q (/& £), Bxample 4.18¢, Table 4.1 d2; =6 M2721 din = 2sin”(1/M) log, M
(orthogonal d2.. | logo (M), Table 4.1 on page 281
FSK) p | See (2.245)

Table 5.1, p. 361
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Symbol error probability comparison Gain in ¢2. compared with binary antipodal

. - Antipodal M=2 0[dB]
10" Moy QAN ] f%_w' Mary 8K Orthogonal M=2 -3.01
é_ M=2 0
M=4 3.98
= : M-ary PAM [ M =8 -8.45 M =2 -3.01
BPSK, (ref) \\ Em M =2 (exact) M = 16 -13.27 M =14 0
: M =32 | 1834 M-ary FSK [ M = 1,76
S M =64 | -2357 M =16 3.01
E M =2 0 M = 32 3.98
- =1 0 M =01 177
5 M-ary PSK [ M =8 -3.57 M=2 0
* . M =16 -8.17 M -ary M =4 0
o ) s N 2 2 © ) 5 neman " 2 2 M =32 T13.18 bi- M = 1.76
M = 64 ~18.40 orthogonal M =16 3.01
M=4 0 M =32 3.98
M-ary QAM, M = 4,16,64,256  M-ary FSK, M =2,4.8,16,32,64 ML 0 e
M-ary QAM | M =64 -8.45
log, M 2 M =256 | -13.27
i =3 £ dpin = logy M M =1024 | -18.34
M—1 - -
M = 4096 | -23.57
Large values M reduce energy efficiency
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Example scenario: M-ary QAM Example 4.22: adapting M to channel quality
» We want to ensure that Py < Ps,req1 where for M-ary QAM Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log,(M))
& 2 M versus P./NoW. How large is the bit rate in each case? Assume that pppsx = 1/2
Po<ao (@, | =40(VA) . dy=3t0g [bps/Hz).
0 _
» The pulse shape g(r) is chosen such that log (M)
M=256
R, d2. P 8
=log, (M) pppsk where p = — < 1. £ M=64
p =1logy(M) pgps P=w =X Nw .
o . . 4 M=16
» Combining these requirements we obtain
2
M<1+; PZ :1+3PZTX T T T T T > g)ZW
= X pgpsk NoW X N X 5X 10X 21X 42X 0

» Hence we want to choose M = 2* such that (QAM: k even)

2k < 1_'_;.&
X pppsk NoW

Depending on the channel quality we can achieve different

< k+2 bit rates R, = W, 2W, 3W, or 4W|bps|
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Signal Space Representation

4-PAM 8-PAM
Zp %y Z; Zg Zy %y Zp Z3 4, 2y Zg % , g(t)
o —e o o 6 6 o 6 6 > O ¢1(t) =
0 ! 0 ' VEq
4-PSK (QPSK)
0
g(t)cos(2m f.t
sty - S0 eos@r 1)
E,/2
t) sin(2 t
sa(t) — A0 £ )
B,
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Bit errors vs symbol errors

» Assume that S symbols are transmitted and S, are in error
If a symbol 7z # m is decided, this causes at least 1 bit error and
at most k = log, M bit errors

Serr < Berr < kSerr

v

» This leads to the following relationship between P, and Py:
PS E{Sc’rr} E{Serr'k}
= <p, < = 2 —p
kK oosk s b

v

P, depends on the signal constellation only

The exact P, depends on the mapping from bits to messages my
and hence signal alternatives s, ()

v

Example: Which mapping is better for 4-PAM? (and why?)
(1) mp=00, m; =11, my =01, m3 =10
(2) m0=00, m1=01,m2:11,m3:10
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A geometric description

» As we have seen in Chapter 2 we can represent our signal
alternatives z;(r) as vectors (points) in signal space

7= (1) = (AjV/Eg) PAM
5= 52)=(a/% By/%) QAM,PSK

» The signal energy can be written as

Ts
S L2 2 2
Ej:/o Zj ([) dt:Zj71+Zj12

» Likewise, the squared Euclidean distance becomes
D= [ (ait) ~50) dr = (g 5 + (22— 552)°
ij = 0 Zi Zj = \&i,1 =31 Zi2 —Zj2

Signal energies and distances have a geometric interpretation
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Gray code mappings
» We have seen that for small Ny we can approximate

2

D2,
P ~ c min
s 0 2Ny
» This motivates the use of Gray code mappings:
o,
Zg Zy 2y Zy0
X X 3Bal- X X
1000 1001 1011 1010
Zi2 Zi3 Zi5 Zy4
- X X = X X
Esxaonkp'\;le' 1100 1101 1111 1110
i 3 a3 %
Zay LN RV oy
0100 0101 0111 0110
Z0 Z1 | 23 22
X X A X X
0000 0001 0011 0010
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Receiver for linear filter channel model
» In Chapter 3 we have introduced the model
zo(t) = s¢(1) % (1),

where h(t) denotes the impulse response of the channel filter
For a simple channel with a direct transmission path only

v

he)y=006(t) = z(t)=ous(r)

v

In case of multipath propagation the channel filter can change
the shape and duration of the signals z(r)

v

It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

2w(Ts—1t) < WTh—1), s¢(Tpax—1) s Ts=Tmax+Th

v

The channel matching filter (T}, — r) simplifies the
implementation of the receiver
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Example: three-ray channel
» Consider a channel with three signal paths
W)= 8(t—1)+ 0 8(t— 1) + a3 8(t—13)

» Assuming 1) < 7, < 73 we have T, = 13
» The channel matching filter becomes

h(T/l —t) = h(”L’3 —t)
=03 6(1‘) +(126(l‘— (T3 —1.'2)) “+ o 5([— (T3 — T]))

RAKE receiver structure: oy

|
e

Three-ray channel

To matched
filters

Smn)(t-nTs)

Channel matching
filter h(T,-t)
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ML receiver with channel matching filter
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