LUND
UNIVERSITY

EITG05 - Digital Communications

Week 4, Lecture 2

Performance M-ary Signaling
Receiver for Multipath Channels

Michael Lentmaier
Thursday, September 21, 2017
M-ary Signaling

- The receiver computes M decision variables $\xi_{0}, \xi_{1}, \ldots, \xi_{M-1}$
- The selected message \hat{m} is based on the largest value

$$
\hat{m}=m_{\ell}, \quad \ell=\arg \max _{i} \xi_{i}
$$

- Question: when do we make a wrong decision?

Week 4, Lecture 2

Chapter 4: Receivers in Digital Communication Systems - Part I

- 4.5 M -ary signaling
- 4.6 Receiver structure for the linear filter channel model

Chapter 5: Receivers in Digital Communication Systems - Part II

- 5.1 The MAP receiver for the AWGN channel
5.1.1 A geometric description
- 5.2 Comparisons
5.2.1 Energy efficiency

Pages 272-293, 329-331 and 360-366
Exercises: 4.7, 4.8, 4.27, 4.10, 4.17c, 4.20, 4.29,
Example 4.12 on page 260, 4.32

Michael Lentmaier, Fall 2017
Digital Communications: Week 4, Lecture 2

Probability of a wrong decision

- For $M=2$ we have considered two error probabilities P_{F} and P_{M}
- For a given message $m=m_{j}$, in general there are $M-1$ ways (events) to make a wrong decision,

$$
\left\{\xi_{i}>\xi_{j} \mid m=m_{j}\right\}, \quad i \neq j
$$

- The probability of a wrong decision can be upper bounded by

$$
\operatorname{Pr}\left\{\hat{m} \neq m_{j} \mid m=m_{j}\right\}=\operatorname{Pr}\left\{\bigcup_{\substack{i=0 \\ i \neq j}}^{M-1} \xi_{i}>\xi_{j} \mid m=m_{j}\right\}
$$

$$
\leq \sum_{\substack{i=0 \\ i \neq j}}^{M-1} \operatorname{Pr}\left\{\xi_{i}>\xi_{j} \mid m=m_{j}\right\} \quad \text { (union bound) }
$$

- Note: given some events A and B, the union bound states that

$$
\operatorname{Pr}\{A \cup B\} \leq \operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}
$$

where equality holds if A and B are independent

Symbol error probability

- The symbol error probability can be upper bounded by

$$
P_{s} \leq \sum_{j=0}^{M-1} P_{j} \sum_{\substack{i=0 \\ i \neq j}}^{M-1} \operatorname{Pr}\left\{\xi_{i}>\xi_{j} \mid m=m_{j}\right\}
$$

- From the binary case $M=2$ we know that (pick $i=0$ and $j=1$)

$$
\operatorname{Pr}\left\{\xi_{i}>\xi_{j} \mid m=m_{j}\right\}=Q\left(\sqrt{\frac{D_{i, j}^{2}}{2 N_{0}}}\right)
$$

where $D_{i, j}$ is the Euclidean distance between $z_{i}(t)$ and $z_{j}(t)$

- We obtain the following main result for M-ary signaling:

$$
\max _{\substack{i \\ i \neq j}} Q\left(\sqrt{\frac{D_{i, j}^{2}}{2 N_{0}}}\right) \leq P_{s} \leq \sum_{j=0}^{M-1} P_{j} \sum_{\substack{i=0 \\ i \neq j}}^{M-1} Q\left(\sqrt{\frac{D_{i, j}^{2}}{2 N_{0}}}\right)
$$

Michael Lentmaier, Fall 2017

$$
\text { Digital Communications: Week 4, Lecture } 2
$$

Distances $D_{i, j}$ are important

- P_{s} is determined by the distances $D_{i, j}$ between the signal pairs
- Let us sort these distances

$$
D_{\min }<D_{1}<D_{2}<\cdots<D_{\max }
$$

- Then the upper bound on P_{s} can be written as

$$
P_{s} \leq c Q\left(\sqrt{\frac{D_{\min }^{2}}{2 N_{0}}}\right)+c_{1} Q\left(\sqrt{\frac{D_{1}^{2}}{2 N_{0}}}\right)+\cdots+c_{x} Q\left(\sqrt{\frac{D_{\max }^{2}}{2 N_{0}}}\right)
$$

- The coefficients are

$$
c_{\ell}=\sum_{j=1}^{M-1} P_{j} \cdot n_{j, \ell}, \quad \ell=0,1,2, \ldots, x
$$

- $n_{j, \ell}$: number of signals at distance D_{ℓ} from signal $z_{j}(t)$ How many distinct terms do exist for 4-PAM?

Example: orthogonal signaling

- Consider M orthogonal signals with equal energy E
- Examples: FSK, PPM
- For each pair $z_{i}(t)$ and $z_{j}(t)$ we get

$$
D_{i, j}^{2}=E+E=2 E
$$

- From the union bound we obtain

$$
\begin{aligned}
P_{s} & \leq \sum_{j=0}^{M-1} P_{j} \sum_{\substack{i=0 \\
i \neq j}}^{M-1} Q\left(\sqrt{\frac{D_{i, j}^{2}}{2 N_{0}}}\right) \\
& =(M-1) Q\left(\sqrt{\frac{2 E}{2 N_{0}}}\right)=(M-1) Q\left(\sqrt{\frac{E}{N_{0}}}\right)
\end{aligned}
$$

- This generalizes the binary case from the previous lecture

A useful approximation of P_{s}

- The union bound is easy to compute if we know all distances D_{ℓ}
- At large signal-to-noise ratio (small N_{0}), i.e., when P_{s} is small, the first term provides a good approximation

$$
P_{s} \approx c Q\left(\sqrt{\frac{D_{\min }^{2}}{2 N_{0}}}\right)
$$

- We see that the minimum distance $D_{\text {min }}^{2}$ and the average number of closest signals c dominate the performance in this case
- Explanation:
the function $Q(x)$ decreases very fast as x increases (faster than exponentially). The other terms become negligible at some point.
\Rightarrow at small P_{S} (small N_{0}) we can compare different signal constellations by means of $D_{\text {min }}^{2}$, similarly to the binary case

Energy efficiency and normalized distances

- Consider the case $P_{\ell}=1 / M, \ell=0,1, \ldots, M-1$
- The average received energy per bit is given by

$$
\mathcal{E}_{b}=\frac{1}{k} \sum_{i=0}^{M-1} \frac{1}{M} \int_{0}^{T_{s}} z_{i}^{2}(t) d t=\frac{1}{k} \frac{E_{0}+E_{1}+\cdots E_{M-1}}{M}
$$

- Using the normalized squared Euclidean distances

$$
d_{\ell}^{2}=\frac{D_{\ell}^{2}}{2 \mathcal{E}_{b}},
$$

the union bound can be written as

$$
P_{s} \leq c Q\left(\sqrt{d_{\min }^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)+c_{1} Q\left(\sqrt{d_{1}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)+\cdots+c_{x} Q\left(\sqrt{d_{\max }^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)
$$

- The parameters d_{ℓ}^{2} determine the energy efficiency

Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding parameters $d_{\min , A}^{2}$ and $d_{\min , B}^{2}$. From the equality (see e.g. the dominating term in the union bound),

$$
d_{\min , A}^{2} \mathcal{E}_{b, A} / N_{0}=d_{\min , B}^{2} \mathcal{E}_{b, B} / N_{0}
$$

we find that the difference (in $d B$) in received energy per information bit is (compare with (2.13) on page 16),

$$
10 \log _{10}\left(\mathcal{E}_{b, B}\right)-10 \log _{10}\left(\mathcal{E}_{b, A}\right)=10 \log _{10}\left(\frac{d_{\min , A}^{2}}{d_{\min , B}^{2}}\right)
$$

Calculate the value $10 \log _{10}\left(\frac{d_{\min , A}^{2}}{d_{\min , B}^{2}}\right)$ if " A " is binary antipodal PAM, and if " B " is 4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

- For M-ary PAM we have (Table 4.1 or Table 5.1)

$$
d_{\min }^{2}=6 \log _{2}(M) /\left(M^{2}-1\right) \quad \Rightarrow d_{\min , A}^{2}=2, d_{\min , B}^{2}=4 / 5
$$

- $10 \log _{10} d_{\text {min }, A}^{2} / d_{\min , B}^{2}=10 \log _{10} 5 / 2=3.98 \mathrm{~dB}$

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
\qquad
\qquad

Symbol error probability comparison

M-ary PAM, $M=2,4,8,16$

$$
d_{\min }^{2}=6 \cdot \frac{\log _{2} M}{M^{2}-1}
$$

$$
d_{\min }^{2}=2 \sin ^{2}(\pi / M) \log _{2} M
$$

Symbol error probability comparison

M-ary QAM, $M=4,16,64,256$

$$
d_{\min }^{2}=3 \cdot \frac{\log _{2} M}{M-1}
$$

M-ary FSK, $M=2,4,8,16,32,64$

$$
d_{\min }^{2}=\log _{2} M
$$

Example scenario: M-ary QAM

- We want to ensure that $P_{s} \leq P_{s, r e q}$, where for M-ary QAM

$$
P_{s} \leq 4 Q\left(\sqrt{d_{\min }^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)=4 Q(\sqrt{\mathcal{X}}), \quad d_{\min }^{2}=3 \log _{2} \frac{M}{M-1}
$$

- The pulse shape $g(t)$ is chosen such that

$$
\rho=\log _{2}(M) \rho_{B P S K}, \quad \text { where } \rho=\frac{R_{b}}{W} \leq \frac{d_{\min }^{2}}{\mathcal{X}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}
$$

- Combining these requirements we obtain

$$
M \leq 1+\frac{3}{\mathcal{X} \rho_{B P S K}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}=1+\frac{3}{\mathcal{X}} \cdot \frac{\mathcal{P}_{z} T_{s}}{N_{0}}
$$

- Hence we want to choose $M=2^{k}$ such that (QAM: k even)

$$
2^{k} \leq 1+\frac{3}{\mathcal{X} \rho_{B P S K}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}<2^{k+2}
$$

Gain in $d_{\text {min }}^{2}$ compared with binary antipodal

Large values M reduce energy efficiency

Michael Lentmaier, Fall 2017 \qquad

Example 4.22: adapting M to channel quality

Assume that an M-ary $Q A M$ system adapts between 4-ary $Q A M, 16$-ary $Q A M, 64$-ary $Q A M$ and 256-ary $Q A M$. Show when a new M is chosen by plotting $M\left(o r \log _{2}(M)\right)$ versus $\mathcal{P}_{z} / N_{0} W$. How large is the bit rate in each case? Assume that $\rho_{B P S K}=1 / 2$ [bps/Hz].

Depending on the channel quality we can achieve different bit rates $R_{b}=W, 2 W, 3 W$, or $4 W[\mathrm{bps}]$

Signal Space Representation

Bit errors vs symbol errors

- Assume that S symbols are transmitted and $S_{\text {err }}$ are in error
- If a symbol $\hat{m} \neq m$ is decided, this causes at least 1 bit error and at most $k=\log _{2} M$ bit errors

$$
S_{e r r} \leq B_{e r r} \leq k S_{e r r}
$$

- This leads to the following relationship between P_{b} and P_{s} :

$$
\frac{P_{s}}{k}=\frac{E\left\{S_{e r r}\right\}}{S \cdot k} \leq P_{b} \leq \frac{E\left\{S_{e r r} \cdot k\right\}}{S \cdot k}=P_{s}
$$

- P_{s} depends on the signal constellation only
- The exact P_{b} depends on the mapping from bits to messages m_{ℓ} and hence signal alternatives $s_{m_{\ell}}(t)$

Example: Which mapping is better for 4-PAM? (and why?)
(1) $m_{0}=00, m_{1}=11, m_{2}=01, m_{3}=10$
(2) $m_{0}=00, m_{1}=01, m_{2}=11, m_{3}=10$

A geometric description

- As we have seen in Chapter 2 we can represent our signal alternatives $z_{j}(t)$ as vectors (points) in signal space

$$
\begin{array}{cc}
\mathbf{z}_{j}=\left(z_{j, 1}\right)=\left(A_{j} \sqrt{E_{g}}\right) & \text { PAM } \\
\mathbf{z}_{j}=\left(\begin{array}{ll}
z_{j, 1} & z_{j, 2}
\end{array}\right)=\left(\begin{array}{ll}
A_{j} \sqrt{\frac{E_{g}}{2}} & B_{j} \sqrt{\frac{E_{g}}{2}}
\end{array}\right) & \text { QAM, PSK }
\end{array}
$$

- The signal energy can be written as

$$
E_{j}=\int_{0}^{T_{s}} z_{j}^{2}(t) d t=z_{j, 1}^{2}+z_{j, 2}^{2}
$$

- Likewise, the squared Euclidean distance becomes

$$
D_{i, j}^{2}=\int_{0}^{T_{s}}\left(z_{i}(t)-z_{j}(t)\right)^{2} d t=\left(z_{i, 1}-z_{j, 1}\right)^{2}+\left(z_{i, 2}-z_{j, 2}\right)^{2}
$$

Signal energies and distances have a geometric interpretation

$$
\text { Michael Lentmaier, Fall } 2017
$$

$$
\text { Digital Communications: Week 4, Lecture } 2
$$

Gray code mappings

- We have seen that for small N_{0} we can approximate

$$
P_{s} \approx c Q\left(\sqrt{\frac{D_{\min }^{2}}{2 N_{0}}}\right)
$$

- This motivates the use of Gray code mappings:

Example: 16-QAM

Receiver for linear filter channel model

- In Chapter 3 we have introduced the model

$$
z_{\ell}(t)=s_{\ell}(t) * h(t)
$$

where $h(t)$ denotes the impulse response of the channel filter

- For a simple channel with a direct transmission path only

$$
h(t)=\alpha \delta(t) \quad \Rightarrow z_{\ell}(t)=\alpha s_{\ell}(t)
$$

- In case of multipath propagation the channel filter can change the shape and duration of the signals $z_{\ell}(t)$
- It can be shown that the matched filter of the overall system can be replaced with a cascade of two separate matched filters

$$
z_{\ell}\left(T_{s}-t\right) \quad \Leftrightarrow \quad h\left(T_{h}-t\right), s_{\ell}\left(T_{\max }-t\right), \quad T_{s}=T_{\max }+T_{h}
$$

- The channel matching filter $h\left(T_{h}-t\right)$ simplifies the implementation of the receiver

$$
\text { Michael Lentmaier, Fall } 2017
$$

$$
\text { Digital Communications: Week 4, Lecture } 2
$$

ML receiver with channel matching filter

Example: three-ray channel

- Consider a channel with three signal paths

$$
h(t)=\alpha_{1} \delta\left(t-\tau_{1}\right)+\alpha_{2} \delta\left(t-\tau_{2}\right)+\alpha_{3} \delta\left(t-\tau_{3}\right)
$$

- Assuming $\tau_{1}<\tau_{2}<\tau_{3}$ we have $T_{h}=\tau_{3}$
- The channel matching filter becomes

$$
\begin{aligned}
h\left(T_{h}-t\right) & =h\left(\tau_{3}-t\right) \\
& =\alpha_{3} \delta(t)+\alpha_{2} \delta\left(t-\left(\tau_{3}-\tau_{2}\right)\right)+\alpha_{1} \delta\left(t-\left(\tau_{3}-\tau_{1}\right)\right)
\end{aligned}
$$

RAKE receiver structure:

