

EITG05 – Digital Communications

Week 4, Lecture 2

Performance *M*-ary Signaling Receiver for Multipath Channels

M-ary Signaling

- The receiver computes *M* decision variables $\xi_0, \xi_1, \dots, \xi_{M-1}$
- The selected message \hat{m} is based on the largest value

 $\hat{m} = m_{\ell}$, $\ell = \arg \max_{i} \xi_{i}$

• **Question:** when do we make a wrong decision?

Week 4, Lecture 2

Chapter 4: Receivers in Digital Communication Systems - Part I

- 4.5 M-ary signaling
- ► 4.6 Receiver structure for the linear filter channel model

Chapter 5: Receivers in Digital Communication Systems - Part II

- ▶ 5.1 The MAP receiver for the AWGN channel
 - 5.1.1 A geometric description
- 5.2 Comparisons
 - 5.2.1 Energy efficiency

Pages 272 - 293, 329 - 331 and 360 - 366

Exercises: 4.7, 4.8, 4.27, 4.10, 4.17c, 4.20, 4.29, Example 4.12 on page 260, 4.32

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

Probability of a wrong decision

- For M = 2 we have considered two error probabilities P_F and P_M
- ► For a given message $m = m_j$, in general there are M 1 ways (events) to make a wrong decision,

$$\left\{ \xi_i > \xi_j \mid m = m_j \right\}, \quad i \neq j$$

The probability of a wrong decision can be upper bounded by

$$Pr\{\hat{m} \neq m_{j} | m = m_{j}\} = Pr\left\{\bigcup_{\substack{i=0\\i\neq j}}^{M-1} \xi_{i} > \xi_{j} \mid m = m_{j}\right\}$$
$$\leq \sum_{\substack{i=0\\i\neq j}}^{M-1} Pr\{\xi_{i} > \xi_{j} \mid m = m_{j}\} \quad \text{(union bound)}$$

► Note: given some events A and B, the union bound states that

$$Pr\{A\cup B\} \leq Pr\{A\} + Pr\{B\} ,$$

where equality holds if A and B are independent

Symbol error probability

The symbol error probability can be upper bounded by

$$P_{s} \leq \sum_{j=0}^{M-1} P_{j} \sum_{\substack{i=0 \ i \neq j}}^{M-1} Pr\{\xi_{i} > \xi_{j} \mid m = m_{j}\}$$

From the binary case M = 2 we know that (pick i = 0 and j = 1)

$$Pr\{\xi_i > \xi_j \mid m = m_j\} = Q\left(\sqrt{rac{D_{i,j}^2}{2N_0}}
ight)$$

where $D_{i,j}$ is the Euclidean distance between $z_i(t)$ and $z_j(t)$

► We obtain the following main result for *M*-ary signaling:

$$\max_{\substack{i\\i\neq j}} Q\left(\sqrt{\frac{D_{i,j}^2}{2N_0}}\right) \leq P_s \leq \sum_{j=0}^{M-1} P_j \sum_{\substack{i=0\\i\neq j}}^{M-1} Q\left(\sqrt{\frac{D_{i,j}^2}{2N_0}}\right)$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

Distances $D_{i,j}$ are important

- P_s is determined by the distances $D_{i,j}$ between the signal pairs
- Let us sort these distances

$$D_{min} < D_1 < D_2 < \cdots < D_{max}$$

• Then the upper bound on P_s can be written as

$$P_s \leq c \ Q\left(\sqrt{\frac{D_{min}^2}{2N_0}}\right) + c_1 \ Q\left(\sqrt{\frac{D_1^2}{2N_0}}\right) + \dots + c_x \ Q\left(\sqrt{\frac{D_{max}^2}{2N_0}}\right)$$

The coefficients are

$$c_{\ell} = \sum_{j=1}^{M-1} P_j \cdot n_{j,\ell} , \quad \ell = 0, 1, 2, \dots, x$$

▶ $n_{j,\ell}$: number of signals at distance D_{ℓ} from signal $z_j(t)$

How many distinct terms do exist for 4-PAM?

Example: orthogonal signaling

- Consider *M* orthogonal signals with equal energy *E*
- Examples: FSK, PPM
- For each pair $z_i(t)$ and $z_j(t)$ we get

$$D_{i,j}^2 = E + E = 2E$$

From the union bound we obtain

$$P_{s} \leq \sum_{j=0}^{M-1} P_{j} \sum_{\substack{i=0\\i\neq j}}^{M-1} Q\left(\sqrt{\frac{D_{i,j}^{2}}{2N_{0}}}\right)$$
$$= (M-1) Q\left(\sqrt{\frac{2E}{2N_{0}}}\right) = (M-1) Q\left(\sqrt{\frac{E}{N_{0}}}\right)$$

This generalizes the binary case from the previous lecture

Michael Lentmaier, Fall 2017

```
Digital Communications: Week 4, Lecture 2
```


- The union bound is easy to compute if we know all distances D_ℓ
- At large signal-to-noise ratio (small N₀), i.e., when P_s is small, the first term provides a good approximation

$$P_s \approx c \ Q\left(\sqrt{\frac{D_{min}^2}{2N_0}}\right)$$

► We see that the minimum distance D²_{min} and the average number of closest signals c dominate the performance in this case

• Explanation:

the function Q(x) decreases very fast as x increases (faster than exponentially). The other terms become negligible at some point.

 \Rightarrow at small P_s (small N_0) we can compare different signal constellations by means of D_{min}^2 , similarly to the binary case

Energy efficiency and normalized distances

- Consider the case $P_{\ell} = 1/M$, $\ell = 0, 1, \dots, M-1$
- The average received energy per bit is given by

$$\mathcal{E}_b = \frac{1}{k} \sum_{i=0}^{M-1} \frac{1}{M} \int_0^{T_s} z_i^2(t) \ dt = \frac{1}{k} \ \frac{E_0 + E_1 + \dots + E_{M-1}}{M}$$

Using the normalized squared Euclidean distances

$$d_\ell^2 = rac{D_\ell^2}{2\mathcal{E}_b} \; ,$$

the union bound can be written as

$$P_{s} \leq c Q\left(\sqrt{d_{\min}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right) + c_{1} Q\left(\sqrt{d_{1}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right) + \dots + c_{x} Q\left(\sqrt{d_{\max}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)$$

• The parameters d_{ℓ}^2 determine the energy efficiency

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

Comparisons

	P_b	$Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right)$, (4.55)		
M = 2	d_{\min}^2	$0 \le d_{\min}^2 \le 2, (4.57)$		
	ρ	$ \rho_{bin}, (2.21) $		
	P_s	$2\left(1-\frac{1}{M}\right)Q\left(\sqrt{d_{\min}^2\frac{\mathcal{E}_b}{N_0}}\right), (5.35)$		
M-ary PAM	$d^2_{\rm min}$	$\frac{6 \log_2(M)}{M^2 - 1}$, Table 4.1 on page 281, (2.50)		
	ρ	$\rho_{2-PAM} \cdot \log_2(M), (2.220)$		
	P_s	$< 2Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.43)$		
M-ary PSK	d_{\min}^2	$2\sin^2(\pi/M)\log_2(M)$, Table 4.1, Fig. 5.11		
	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$		
M-ary QAM	P_s	$4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right) -$		
(rect., k even)		$-4\left(1-\frac{1}{\sqrt{M}}\right)^2 Q^2\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.50)$		
(QPSK with	$d^2_{\rm min}$	$\frac{3 \log_2(M)}{M-1}$, Table 4.1, Subsection 2.4.5.1		
M = 4)	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$		
M-ary FSK	P_s	$\leq (M-1)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right)$, Example 4.18c, Table 4.1		
(orthogonal	d_{\min}^2	$\log_2(M)$, Table 4.1 on page 281		
FSK)	ρ	See (2.245)		
Table 5.1, p. 361				

Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding parameters $d_{\min,A}^2$ and $d_{\min,B}^2$. From the equality (see e.g. the dominating term in the union bound),

$$l_{\min,A}^2 \mathcal{E}_{b,A}/N_0 = d_{\min,B}^2 \mathcal{E}_{b,B}/N_0$$

we find that the difference (in dB) in received energy per information bit is (compare with (2.13) on page 16),

$$10\log_{10}(\mathcal{E}_{b,B}) - 10\log_{10}(\mathcal{E}_{b,A}) = 10\log_{10}\left(\frac{d_{\min,A}^2}{d_{\min,B}^2}\right)$$

Calculate the value $10 \log_{10} \left(\frac{d^2_{\min,A}}{d^2_{\min,B}} \right)$ if "A" is binary antipodal PAM, and if "B" is 4-ary PAM. Assume, that the conditions leading to (2.50) are satisfied.

► For *M*-ary PAM we have (Table 4.1 or Table 5.1)

$$d_{min}^2 = 6\log_2(M)/(M^2 - 1) \quad \Rightarrow \ d_{min,A}^2 = 2, \ d_{min,B}^2 = 4/5$$

► $10\log_{10}d_{min,A}^2/d_{min,B}^2 = 10\log_{10}5/2 = 3.98 \text{ dB}$

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

M-ary PSK

Symbol error probability comparison

M-ary PAM, *M* = 2,4,8,16

 $d_{min}^2 = 6 \cdot \frac{\log_2 M}{M^2 - 1}$

M-ary PSK, *M* = 2,4,8,16,32

 $d_{min}^2 = 2\sin^2(\pi/M) \, \log_2 M$

Michael Lentmaier, Fall 2017

Symbol error probability comparison

Gain in d_{min}^2 compared with binary antipodal

Antipodal	M = 2	0[dB]
Orthogonal	M = 2	-3.01
	M = 2	0
	M = 4	-3.98
M-ary PAM	M = 8	-8.45
	M = 16	-13.27
	M = 32	-18.34
	M = 64	-23.57
	M = 2	0
	M = 4	0
M-ary PSK	M = 8	-3.57
	M = 16	-8.17
	M = 32	-13.18
	M = 64	-18.40
	M = 4	0
	M = 16	-3.98
M-ary QAM	M = 64	-8.45
	M = 256	-13.27
	M = 1024	-18.34
	M = 4096	-23.57

	M = 2	-3.01
	M = 4	0
M-ary FSK	M = 8	1.76
	M = 16	3.01
	M = 32	3.98
	M = 64	4.77
	M = 2	0
M -ary	M = 4	0
bi-	M = 8	1.76
orthogonal	M = 16	3.01
	M = 32	3.98
	M = 64	4.77

Michael Lentmaier, Fall 2017

Large values *M* reduce energy efficiency

Example scenario: *M*-ary QAM

▶ We want to ensure that $P_s \leq P_{s,req}$, where for *M*-ary QAM

$$P_s \leq 4 \ Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right) = 4 \ Q\left(\sqrt{\mathcal{X}}\right) \ , \quad d_{\min}^2 = 3 \ \log_2 \frac{M}{M-1}$$

• The pulse shape g(t) is chosen such that

$$ho = \log_2(M)
ho_{BPSK}$$
, where $ho = rac{R_b}{W} \leq rac{d_{min}^2}{\mathcal{X}} \cdot rac{\mathcal{P}_z}{N_0 W}$

Combining these requirements we obtain

$$M \le 1 + \frac{3}{\mathcal{X}\,\rho_{BPSK}} \cdot \frac{\mathcal{P}_z}{N_0 \,W} = 1 + \frac{3}{\mathcal{X}} \cdot \frac{\mathcal{P}_z \,T_z}{N_0}$$

• Hence we want to choose $M = 2^k$ such that (QAM: k even)

$$2^k \leq 1 + rac{3}{\mathcal{X} \rho_{BPSK}} \cdot rac{\mathcal{P}_z}{N_0 W} < 2^{k+2}$$

Example 4.22: adapting M to channel quality

Digital Communications: Week 4, Lecture 2

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or $\log_2(M)$) versus \mathcal{P}_z/N_0W . How large is the bit rate in each case? Assume that $\rho_{BPSK} = 1/2$ [bps/Hz].

Depending on the channel quality we can achieve different bit rates $R_b = W$, 2W, 3W, or 4W[bps]

Signal Space Representation

A geometric description

As we have seen in Chapter 2 we can represent our signal alternatives z_j(t) as vectors (points) in signal space

$$\mathbf{z}_j = (z_{j,1}) = (A_j \sqrt{E_g})$$
 PAM

$$\mathbf{z}_{j} = \begin{pmatrix} z_{j,1} & z_{j,2} \end{pmatrix} = \begin{pmatrix} A_{j}\sqrt{\frac{E_{g}}{2}} & B_{j}\sqrt{\frac{E_{g}}{2}} \end{pmatrix}$$
 QAM, PSK

► The signal energy can be written as

$$E_j = \int_0^{T_s} z_j^2(t) \ dt = z_{j,1}^2 + z_{j,2}^2$$

Likewise, the squared Euclidean distance becomes

$$D_{i,j}^2 = \int_0^{T_s} \left(z_i(t) - z_j(t) \right)^2 dt = (z_{i,1} - z_{j,1})^2 + (z_{i,2} - z_{j,2})^2$$

Signal energies and distances have a geometric interpretation

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

Bit errors vs symbol errors

- ▶ Assume that *S* symbols are transmitted and *S*_{err} are in error
- If a symbol m̂ ≠ m is decided, this causes at least 1 bit error and at most k = log₂ M bit errors

$$S_{err} \leq B_{err} \leq k S_{err}$$

▶ This leads to the following relationship between *P_b* and *P_s*:

$$\frac{P_s}{k} = \frac{E\{S_{err}\}}{S \cdot k} \le P_b \le \frac{E\{S_{err} \cdot k\}}{S \cdot k} = P_s$$

- P_s depends on the signal constellation only
- ► The exact P_b depends on the mapping from bits to messages m_ℓ and hence signal alternatives s_{m_ℓ}(t)

Example: Which mapping is better for 4-PAM? (and why?)

- (1) $m_0 = 00, m_1 = 11, m_2 = 01, m_3 = 10$
- (2) $m_0 = 00, m_1 = 01, m_2 = 11, m_3 = 10$

Gray code mappings

• We have seen that for small N_0 we can approximate

$$P_s \approx c \ Q \left(\sqrt{\frac{D_{min}^2}{2N_0}} \right)$$

This motivates the use of Gray code mappings:

Michael Lentmaier, Fall 2017

Example:

16-QAM

Michael Lentmaier, Fall 2017

Receiver for linear filter channel model

► In Chapter 3 we have introduced the model

 $z_{\ell}(t) = s_{\ell}(t) * h(t) ,$

where h(t) denotes the impulse response of the channel filter

► For a simple channel with a direct transmission path only

$$h(t) = \alpha \, \delta(t) \quad \Rightarrow \, z_\ell(t) = \alpha \, s_\ell(t)$$

- In case of multipath propagation the channel filter can change the shape and duration of the signals $z_{\ell}(t)$
- It can be shown that the matched filter of the overall system can be replaced with a cascade of two separate matched filters

$$z_{\ell}(T_s - t) \quad \Leftrightarrow \quad h(T_h - t) \ , \ s_{\ell}(T_{max} - t) \ , \quad T_s = T_{max} + T_h$$

• The channel matching filter $h(T_h - t)$ simplifies the implementation of the receiver

Michael Lentmaier, Fall 2017

Digital Communications: Week 4, Lecture 2

Example: three-ray channel

Consider a channel with three signal paths

$$h(t) = \alpha_1 \,\delta(t-\tau_1) + \alpha_2 \,\delta(t-\tau_2) + \alpha_3 \,\delta(t-\tau_3)$$

- Assuming $\tau_1 < \tau_2 < \tau_3$ we have $T_h = \tau_3$
- The channel matching filter becomes

$$h(T_h - t) = h(\tau_3 - t) = \alpha_3 \, \delta(t) + \alpha_2 \, \delta(t - (\tau_3 - \tau_2)) + \alpha_1 \, \delta(t - (\tau_3 - \tau_1))$$

ML receiver with channel matching filter

