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The Minimum Euclidean Distance Receiver Correlation based implementation
Equivalently we can write:
N(t) r
; Receiver based { = argmin D%»:ar max / Sr t)zi(¢t) dt —E; /2
memi — X 20 (t) onx(®)in a g ; i g A (1)zi(1) i/
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) RECEIVER
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» The received signal is compared with all noise-free signals z;(¢)

i : : | — [ %&L |
in terms of the squared Euclidean distance | d 1

Ts Ty Ts
D%_’i = / (r(z) —Zi(t))2 dt=E, — 2/ r(t)zi(t) dt + E; %ﬁ I 9& & o
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LARGEST 3
» The message is selected according to the following decision rule: (oM ‘ ‘
£=0 | Z (O -EM-1/2 :
A | T. |
(r(t)) =my , | : El |
! j( ydt = !
where ¢ =argmin D?; ! 0 !
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Matched filter implementation Matched filter vs correlator implementation

'
CORRELATION RECEIVER 1

7(tnT 9 -Eo2
(+D)Ts
— e =

2@ty [T Ey2

» A filter with impulse response ¢(¢) is matched to a signal z;(¢) if

Soln!

q(t) = zi(—t+Ty) = zi(—(t—Ty)) N

Zmn)(tnTs) ()

(T Silnl | sELECT

— dt =
Jou LARGEST | ! A
ATs . = min]

» Let the received signal r(r) enter this matched filter ¢(r)
» The maiched filter output, evaluated at time ¢t = (n+ 1)T}, can be

Ty ¢ EM-1/2

()T a0
—~ %M

written as
| ()T B Wi mL e
r(t)*q(t) t=(n+1)T, - / I"(T)Zi(f—l’lTs) drt 3 Eol2
o i TR

Ey2
\g %il“ﬂ SELECT
LARGEST

EM-1/2

\g (L/iMJ [n]

t=(n+1)Ts

» Observe:

this is exactly the same output value as the correlator produces

I A
= min]
I

= We can replace each correlator with a matched filter which is
sampled at times r = (n+1) T
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Summary: receiver types Binary Signaling
» Binary signaling (M =2, Ty = T,) simplifies the general receiver
» Minimum Euclidean distance (MED) receiver: » Consider the two decision variables

decision is based on the signal alternative z;() closest to r(¢) (n+1) T,
éi[n]:/ r()zi(i—nTy) di—Ei/2, i=0,1

» Correlation receiver: T;
an implementation of the MED receiver based on correlators » The decision 7i[n] is made according to the larger value, i.e.,
» Matched filter receiver: Mnln}=m
an implementation of the MED receiver based on matched filters &iln] = Sl
fn]=mq
> Maximum likelihood (ML) receiver: » This can be reduced to a single decision variable only

equivalent to MED receiver under our assumptions: ML = ED

(n+1) Ty
= t t—nTs)—z0(t—nTs)) dt
» Maximum a-posteriori (MAP) receiver: Sl /nTS 2 )(Zl( nTs) = zo(t=n ))

minimizes symbol error probability P which is compared to a threshold value
equivalentto ML if P;=1/M,i=0,....M—1: ML = ED = MAP E B
1—Eo

2

m[n]=m

§lhl =

i[n]=myg
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Receiver for Binary Signaling
» Only one correlator or one matched filter is now required:

z, (t-nT s)-zo(t-nT s)

m (n+1)T ¢ my EE .
oro/—\ r(t) j( ) dt U » &N Z 120 F——» m[n]
my nT m,

~

Correlator

m1 A
Xi[n] tm > E,-Ey — Min
< 2
t=(n+1)T m

Matched filter

Sampling N
Threshold unit

» Matched filter output needs be sampled at correct time
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Decision regions

D
I
T’ (decision m) } T, (decision m,)
T | T > &[n]
Po Threshold P,

» With . ,
Bo+Bi =—/O“z%(t) dz+/0‘z%(t) dt =E| — Ey
the decision threshold lies in the center between S, and B;:

Ei—Ey _ Both
2 2

» Furthermore we see that

Br—Po= /OTS (21 () —20(1))” dt =D}y =Dj,
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When do we make a wrong decision?

» Assuming m = my is sent, the decision variable becomes

&[n] :/OTS r(t) (z1(1) —20(2)) dt:/OTS (20(t) +N(1)) - (z1(t) — 20(t)) dt

» We can divide this into a signal component y and
a noise component A/

E[n] = Bo+N

Bo= [ 00 @0 -0 dr, N =[N0 @0 -w) d
0 = o 20 21 20 s = 0 21 20

» Wrong decision: if £[n] > (E| —Ep)/2then m=m; £#my=m

» Analogously, when m = m is sent we get

E[n] =B +N

B = /OTSZl(I) (z1(t) = 20(1)) dt
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Probability of a wrong decision

» There exist two ways to make an error:

Bo B,

Thre‘shold
Pp: false alarm probability Py missed detection probability
» The two probabilities of error can be determined as
P = Pr{im[n] =mi|lm=mo} = Pr{fo+N > (Bo+pB1)/2}
Py = Pr{i[n] = mo|m=m} = Pr{Bi + N < (Bo+B1)/2}

» We can express these in terms of the Q(x)-function:

ﬁl - ﬁO
Pr=Py=0Q
20
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Bit error probability Example

> The bit error probability can be written as » Let z9(r) = 0 and z (¢) rectangular with amplitude A and T = T,,
Py, =PoPr+P Py = (Py+P)Pr=Pr=Py » The information bit rate is R, = 400 kbps

H H 2 —
- With By — By = D%’, and 62 — N0/2~D37, we obtain » Regarding the noise we know that A*/Ny, =70 dB

Bi — Bo Dj, D}, Task: determine the bit error probability P,
Py=0 e ) ol == |=0 —
o 20 2Ny
This fund tal It ides the bit bability P, of Solution:
» This fundamental result provides the bit error probability P, of an . . > o
ML receiver for binary transmission over an AWGN channel > Firstwe find that Dy, = A%/R,
» The additive noise V is sampled from a filtered noise process > Then D3, A2 1
= =125
N(t) ﬂ V() =z (T 2o (T ) }— [ Y ZNo  No 2Ry
t=(n+1)T
> Py=0 (\/12.5) — 0(3.536) =2.3-10*
6% = No/2-E, = No/2 /T“ (1 (1) _ZO(,))2 dt » Last step: check Table 3.1 on page 182
0
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An energy efficiency perspective Special case 1: antipodal signals
» Consider the case Py =P; =1/2 » In case of antipodal signals we have z;(t) = —zy(#) and

» The average received energy per bit is then 7 , T,
D} :/ 1) —zo(t dt:4/ A1) dr=4E
1T, 1T, Ey+E o (@19~ 20(0) p a0
gbZE/ 2(0) dr + 5/ G ar=""1=

0 0 » From E, = E, = E follows

» We can then introduce the normalized squared Euclidean ELE
distance 5 & = = E
D 1 Th 2
a3y === — / 1) —z0(1))" dt
b= 28, =5 ), (-2 and Db
» With this the bit error probability becomes 128, 2E
D2 z » The bit error probability for any pair of antipodal signals becomes
0,1 ) b
Py, = = a5, —
v=2\\ 2n, Q( 0.1 N )

— gb

» The parameter d&l is a measure of energy efficiency

Michael Lentmaier, Fall 2017 Digital Communications: Week 4, Lecture 1 Michael Lentmaier, Fall 2017 Digital Communications: Week 4, Lecture 1



Special case 2: orthogonal signals

» In case of orthogonal signals we have

Comparison
Antipodal vs orthogonal signaling:

Ty 10' . .
/o 20()z1(t) dt=0
and hence (compare page 28) bl 1
5 Ty 2 2
Dy, :/0 (21(r) —20(1))” dt = Eg + E, S 1
> ThIS g|VeS gw", ;Antipodal Orthogonal |
Ey+E 5
gb - 2 d 107 E 4
and X
@2, =201 _Eo+Er .
01728, Eg+E or ;
» The bit error probability for any pair of orthogonal signals is o ‘ ‘ ‘ ‘ : : :
-2 0 2 6 10 12 14
&/No in dB

&
P,=0 \/ﬁz

Larger values of d3 , give better energy efficiency
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Antipodal vs orthogonal signaling Example 4.11: rank pairs with respect to d(%’]

70(t) 710 7(t) )
» There is a constant gap between the two curves AL “% i M 2o
. . . . T Ty, Ty ! i
» We can measure the difference in energy efficiency by the ratio R b,
Pair 1 Pair 2
2
gb,atp o dO,Lort _ 1 7 210 20(0=sinm/Ty) 2, (O=sinmBY2T
Epornt  d2 2 A N Al
»ort 0,1,atp “ . %) . t T _ [\ t
Ty A Ty Al % A U Ty,
» In terms of dB this corresponds to Pair3 Pair 4
7y(0) 310 79(t) zy(t)
gb atp d(z) 1,ort N N A
1010g10 5b = 1010g10 > =-3 [dB] /\ ‘ . B —_— [\ Tp . /\ /\ .
sort 0,1,atp T, T Mo VU VES
Pair 5 Pair 6
. . . . 7(t) z1(t) 79(t) z1(t)
= antipodal signaling requires 3 dB less energy for equal P, ¢ : b )
A A A
t To oy t —‘ ﬂ t
B ’Lzb B A %u T
Pair 7 Pair 8
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Can we do better? Relationship between parameters

» The bit error probability can be expressed in different ways
» It is possible to show that for two equally likely signal alternatives

we always have D2
0, & P
dgi <2 Pr=0 1\ 3 —Q< d%,lN’(’)>—Q( d%,lejvo>

» Antipodal signaling is hence optimal for binary signaling (M = 2)

» Assuming zo(7) = aeso(r) and z; () = sy (¢) we also get

Remark:
» Channel coding can be used to further increase d&l » 2 2P, d(2),1 2P,
» Sequences of binary pulses with large separation are designed »=0 Ol RyNg | o NoW

» This does not contradict the result from above:

coded binary signals correspond to uncoded signals with M > 2 ) ) . )
» Recall that p = R,/W is the bandwidth efficiency and Ny W is the

i ithin th idth w
Channel coding can be used for improving energy efficiency noise power within the bandwidt

Cost: complexity, latency, (bandwidth) The expression that is most appropriate to use depends on the

specific problem to be solved
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" . " . . . . . .
A "typical” type of problem Example 4.12: transmission hidden in noise
» The bit error prObabi”TY must not exceed a certain level, In a specific application equally likely binary antipodal signals are used, and the pulse
shape is grc(t) with amplitude A and duration T < T,. AWGN with power spectral
P, < Pb,req = Q(\/ X) density No/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 107°. It is also required that the power spectral density satisfies R(f) <
» Example: if Ppreqg = 1072 then X ~ 36 No/2 for all frequencies [ (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
» Consequences: are satisfied.
d | & > X o
1 No S Pb:Q<\/25b/No) <107° = &/No > 18
d, P, > R(f) = Rp|G,.(f)|> has maximum at f =0
< .2
Ry < < No » R(0) = R;, A’T?/4 < Ny/2 (check pulse shape)

v

Ep/No = 3/8A%T /Ny > 18
Hidden in noise: A>T /Ny < 2/(R,T)
Py, requirement: AT /Ny > 48

Solution:
choose T < T,/24 and A? = 48N, /T

2 -
R, < dO,l . azpsent
=X TN

v

v

v

» Note: the received signal power P, decreases with
communication distance
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Non-ideal receiver conditions Non-ideal receiver conditions

Example 4.15: unexpected additional noise w,, i.e., w = wy + wy Example 4.16: hostile bursty interference
1o’ é 0 ! !
107 B 107 E
>}10’2 E ‘%10’Z E
Zg Tdeal case Error floor 2 urst noise
5'0 E 510" T il
g E |
107 10 £ |
10°E 107k E
w* (‘) ; 1‘0 1‘5 ‘ 2‘5 C;O 3‘5 40 w° (; 5‘ 10 20 25 30

oo 20 15
/0% in dB a?/o? in dB

Observe: at low power an interference in bursts is

Can be analyzed with our methods more severe than continuous interference
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