LUND
UNIVERSITY

EITG05 - Digital Communications

Week 4, Lecture 1

Matched Filter Receiver
Performance Binary Signaling

Michael Lentmaier
Monday, September 18, 2017

The Minimum Euclidean Distance Receiver

- The received signal is compared with all noise-free signals $z_{i}(t)$ in terms of the squared Euclidean distance

$$
D_{r, i}^{2}=\int_{0}^{T_{s}}\left(r(t)-z_{i}(t)\right)^{2} d t=E_{r}-2 \int_{0}^{T_{s}} r(t) z_{i}(t) d t+E_{i}
$$

- The message is selected according to the following decision rule:

Week 4, Lecture 1

Chapter 4: Receivers in Digital Communication Systems - Part I

- 4.3 The minimum Euclidean distance receiver
4.3.1 Matched filter implementation
- 4.4 Binary signaling
4.4.1 P_{b} for minimum Euclidean distance receiver
4.4.1.1 Equally likely signal alternatives
4.4.1.2 Binary signaling over N channels
4.4.1.3 Non-ideal receiver filter $v(t)$ and threshold B

Pages 244-272
Exercises: 3.11c, Example 3.19 on page 168, 3.23, 4.1, 4.2, 4.6

Correlation based implementation

Equivalently we can write:

$$
\ell=\arg \min _{i} D_{r, i}^{2}=\arg \max _{i} \int_{0}^{T_{s}} r(t) z_{i}(t) d t-E_{i} / 2
$$

Matched filter implementation

- A filter with impulse response $q(t)$ is matched to a signal $z_{i}(t)$ if

$$
q(t)=z_{i}\left(-t+T_{s}\right)=z_{i}\left(-\left(t-T_{s}\right)\right)
$$

- Let the received signal $r(t)$ enter this matched filter $q(t)$
- The matched filter output, evaluated at time $t=(n+1) T_{s}$, can be written as

$$
\left.r(t) * q(t)\right|_{t=(n+1) T_{s}}=\int_{n T_{s}}^{(n+1) T_{s}} r(\tau) z_{i}\left(\tau-n T_{s}\right) d \tau
$$

- Observe:
this is exactly the same output value as the correlator produces
\Rightarrow We can replace each correlator with a matched filter which is sampled at times $t=(n+1) T_{s}$

Michael Lentmaier, Fall 2017
Digital Communications: Week 4, Lecture

Summary: receiver types

- Minimum Euclidean distance (MED) receiver: decision is based on the signal alternative $z_{i}(t)$ closest to $r(t)$
- Correlation receiver:
an implementation of the MED receiver based on correlators
- Matched filter receiver:
an implementation of the MED receiver based on matched filters
- Maximum likelihood (ML) receiver:
equivalent to MED receiver under our assumptions: ML = ED
- Maximum a-posteriori (MAP) receiver:
minimizes symbol error probability P_{s}
equivalent to ML if $P_{i}=1 / M, i=0, \ldots, M-1: \mathrm{ML}=\mathrm{ED}=\mathrm{MAP}$

Matched filter vs correlator implementation

Binary Signaling

- Binary signaling ($M=2, T_{s}=T_{b}$) simplifies the general receiver
- Consider the two decision variables

$$
\xi_{i}[n]=\int_{n T_{s}}^{(n+1) T_{s}} r(t) z_{i}\left(t-n T_{s}\right) d t-E_{i} / 2, \quad i=0,1
$$

- The decision $\hat{m}[n]$ is made according to the larger value, i.e.,
- This can be reduced to a single decision variable only

$$
\xi[n]=\int_{n T_{s}}^{(n+1) T_{s}} r(t)\left(z_{1}\left(t-n T_{s}\right)-z_{0}\left(t-n T_{s}\right)\right) d t
$$

which is compared to a threshold value

$$
\xi[n] \stackrel{\hat{m}[n]=m_{1}}{\underset{m}{m}[n]=m_{0}} \gtrless \frac{E_{1}-E_{0}}{2}
$$

Receiver for Binary Signaling

- Only one correlator or one matched filter is now required:

- Matched filter output needs be sampled at correct time
Digital Communications: Week 4, Lecture

Decision regions

- With

$$
\beta_{0}+\beta_{1}=-\int_{0}^{T_{s}} z_{0}^{2}(t) d t+\int_{0}^{T_{s}} z_{1}^{2}(t) d t=E_{1}-E_{0}
$$

the decision threshold lies in the center between β_{0} and β_{1} :

$$
\frac{E_{1}-E_{0}}{2}=\frac{\beta_{0}+\beta_{1}}{2}
$$

- Furthermore we see that

$$
\beta_{1}-\beta_{0}=\int_{0}^{T_{s}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t=D_{1,0}^{2}=D_{0,1}^{2}
$$

When do we make a wrong decision?

- Assuming $m=m_{0}$ is sent, the decision variable becomes

$$
\xi[n]=\int_{0}^{T_{s}} r(t)\left(z_{1}(t)-z_{0}(t)\right) d t=\int_{0}^{T_{s}}\left(z_{0}(t)+N(t)\right) \cdot\left(z_{1}(t)-z_{0}(t)\right) d t
$$

- We can divide this into a signal component β_{0} and a noise component \mathcal{N}

$$
\begin{gathered}
\xi[n]=\beta_{0}+\mathcal{N} \\
\beta_{0}=\int_{0}^{T_{s}} z_{0}(t)\left(z_{1}(t)-z_{0}(t)\right) d t, \quad \mathcal{N}=\int_{0}^{T_{s}} N(t)\left(z_{1}(t)-z_{0}(t)\right) d t
\end{gathered}
$$

- Wrong decision: if $\xi[n]>\left(E_{1}-E_{0}\right) / 2$ then $\hat{m}=m_{1} \neq m_{0}=m$
- Analogously, when $m=m_{1}$ is sent we get

$$
\begin{gathered}
\xi[n]=\beta_{1}+\mathcal{N} \\
\beta_{1}=\int_{0}^{T_{s}} z_{1}(t)\left(z_{1}(t)-z_{0}(t)\right) d t
\end{gathered}
$$

Michael Lentmaier, Fall 2017

Probability of a wrong decision

- There exist two ways to make an error:

P_{F} : false alarm probability $\quad P_{M}$: missed detection probability
- The two probabilities of error can be determined as

$$
\begin{aligned}
P_{F} & =\operatorname{Pr}\left\{\hat{m}[n]=m_{1} \mid m=m_{0}\right\} \\
P_{M} & =\operatorname{Pr}\left\{\hat{\operatorname{m}}[n]=\beta_{0}+\mathcal{N}>\left(\beta_{0}+\beta_{1}\right) / 2\right\} \\
\left.=m_{1}\right\} & =\operatorname{Pr}\left\{\beta_{1}+\mathcal{N}<\left(\beta_{0}+\beta_{1}\right) / 2\right\}
\end{aligned}
$$

- We can express these in terms of the $Q(x)$-function:

$$
P_{F}=P_{M}=Q\left(\frac{\beta_{1}-\beta_{0}}{2 \sigma}\right)
$$

Bit error probability

- The bit error probability can be written as

$$
P_{b}=P_{0} P_{F}+P_{1} P_{M}=\left(P_{0}+P_{1}\right) P_{F}=P_{F}=P_{M}
$$

- With $\beta_{1}-\beta_{0}=D_{0,1}^{2}$ and $\sigma^{2}=N_{0} / 2 \cdot D_{0,1}^{2}$ we obtain

$$
P_{b}=Q\left(\frac{\beta_{1}-\beta_{0}}{2 \sigma}\right)=Q\left(\frac{D_{0,1}^{2}}{2 \sigma}\right)=Q\left(\sqrt{\frac{D_{0,1}^{2}}{2 N_{0}}}\right)
$$

- This fundamental result provides the bit error probability P_{b} of an ML receiver for binary transmission over an AWGN channel
- The additive noise \mathcal{N} is sampled from a filtered noise process

$$
\sigma^{2}=N_{0} / 2 \cdot E_{v}=N_{0} / 2 \int_{0}^{T_{s}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t
$$

Example

- Let $z_{0}(t)=0$ and $z_{1}(t)$ rectangular with amplitude A and $T=T_{b}$
- The information bit rate is $R_{b}=400 \mathrm{kbps}$
- Regarding the noise we know that $A^{2} / N_{0}=70 \mathrm{~dB}$

Task: determine the bit error probability P_{b}
Solution:

- First we find that $D_{0,1}^{2}=A^{2} / R_{b}$
- Then

$$
\frac{D_{0,1}^{2}}{2 N_{0}}=\frac{A^{2}}{N_{0}} \cdot \frac{1}{2 R_{b}}=12.5
$$

- $P_{b}=Q(\sqrt{12.5})=Q(3.536)=2.3 \cdot 10^{-4}$
- Last step: check Table 3.1 on page 182

Special case 1: antipodal signals

- In case of antipodal signals we have $z_{1}(t)=-z_{0}(t)$ and

$$
D_{0,1}^{2}=\int_{0}^{T_{b}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t=4 \int_{0}^{T_{b}} z_{1}^{2}(t) d t=4 E
$$

- From $E_{0}=E_{1}=E$ follows

$$
\mathcal{E}_{b}=\frac{E+E}{2}=E
$$

and

$$
d_{0,1}^{2}=\frac{D_{0,1}^{2}}{2 \mathcal{E}_{b}}=\frac{4 E}{2 E}=2
$$

- The bit error probability for any pair of antipodal signals becomes

$$
P_{b}=Q\left(\sqrt{2 \frac{\mathcal{E}_{b}}{N_{0}}}\right)
$$

- The parameter $d_{0,1}^{2}$ is a measure of energy efficiency

Special case 2: orthogonal signals

- In case of orthogonal signals we have

$$
\int_{0}^{T_{b}} z_{0}(t) z_{1}(t) d t=0
$$

and hence (compare page 28)

$$
D_{0,1}^{2}=\int_{0}^{T_{b}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t=E_{0}+E_{1}
$$

- This gives

$$
\mathcal{E}_{b}=\frac{E_{0}+E_{1}}{2}
$$

and

$$
d_{0,1}^{2}=\frac{D_{0,1}^{2}}{2 \mathcal{E}_{b}}=\frac{E_{0}+E_{1}}{E_{0}+E_{1}}=1
$$

- The bit error probability for any pair of orthogonal signals is

$$
P_{b}=Q\left(\sqrt{\frac{\mathcal{E}_{b}}{N_{0}}}\right)
$$

Michael Lentmaier, Fall 2017
Digital Communications: Week 4, Lecture

Antipodal vs orthogonal signaling

- There is a constant gap between the two curves
- We can measure the difference in energy efficiency by the ratio

$$
\frac{\mathcal{E}_{b, a t p}}{\mathcal{E}_{b, o r t}}=\frac{d_{0,1, o r t}^{2}}{d_{0,1, a t p}^{2}}=\frac{1}{2}
$$

- In terms of dB this corresponds to

$$
10 \log _{10}\left(\frac{\mathcal{E}_{b, a t p}}{\mathcal{E}_{b, o r t}}\right)=10 \log _{10}\left(\frac{d_{0,1, \text { ort }}^{2}}{d_{0,1, \text { atp }}^{2}}\right)=-3[\mathrm{~dB}]
$$

[^0]
Comparison

Antipodal vs orthogonal signaling:

Larger values of $d_{0,1}^{2}$ give better energy efficiency

$$
\text { Michael Lentmaier, Fall } 2017
$$

$$
\text { Digital Communications: Week 4, Lecture } 1
$$

Example 4.11: rank pairs with respect to $d_{0,1}^{2}$

Pair 7 \qquad ${ }_{\text {Pair }} 8$

Can we do better?

- It is possible to show that for two equally likely signal alternatives we always have

$$
d_{0,1}^{2} \leq 2
$$

- Antipodal signaling is hence optimal for binary signaling $(M=2)$

Remark:

- Channel coding can be used to further increase $d_{0,1}^{2}$
- Sequences of binary pulses with large separation are designed
- This does not contradict the result from above:
coded binary signals correspond to uncoded signals with $M>2$
Channel coding can be used for improving energy efficiency Cost: complexity, latency, (bandwidth)

Michael Lentmaier, Fall 2017

$$
\text { Digital Communications: Week 4, Lecture } 1
$$

A "typical" type of problem

- The bit error probability must not exceed a certain level,

$$
P_{b} \leq P_{b, r e q}=Q(\sqrt{\mathcal{X}})
$$

- Example: if $P_{b, \text { req }}=10^{-9}$ then $\mathcal{X} \approx 36$
- Consequences:

$$
\begin{gathered}
d_{0,1}^{2} \frac{\mathcal{E}_{b}}{N_{0}} \geq \mathcal{X} \\
R_{b} \leq \frac{d_{0,1}^{2}}{\mathcal{X}} \cdot \frac{P_{z}}{N_{0}} \\
R_{b} \leq \frac{d_{0,1}^{2}}{\mathcal{X}} \cdot \frac{\alpha^{2} \bar{P}_{\text {sent }}}{N_{0}}
\end{gathered}
$$

- Note: the received signal power P_{z} decreases with communication distance

Relationship between parameters

- The bit error probability can be expressed in different ways

$$
P_{b}=Q\left(\sqrt{\frac{D_{0,1}^{2}}{2 N_{0}}}\right)=Q\left(\sqrt{d_{0,1}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)=Q\left(\sqrt{d_{0,1}^{2} \frac{P_{z}}{R_{b} N_{0}}}\right)
$$

- Assuming $z_{0}(t)=\alpha s_{0}(t)$ and $z_{1}(t)=\alpha s_{1}(t)$ we also get

$$
P_{b}=Q\left(\sqrt{d_{0,1}^{2} \frac{\alpha^{2} \bar{P}_{\text {sent }}}{R_{b} N_{0}}}\right)=Q\left(\sqrt{\frac{d_{0,1}^{2}}{\rho} \cdot \frac{\alpha^{2} \bar{P}_{\text {sent }}}{N_{0} W}}\right)
$$

- Recall that $\rho=R_{b} / W$ is the bandwidth efficiency and $N_{0} W$ is the noise power within the bandwidth W

The expression that is most appropriate to use depends on the specific problem to be solved

Michael Lentmaier, Fall 2017 \qquad

Example 4.12: transmission hidden in noise

In a specific application equally likely binary antipodal signals are used, and the pulse shape is $g_{r c}(t)$ with amplitude A and duration $T \leq T_{b}$. AWGN with power spectral shape is $g_{r c}(t)$ with amplitude A and duration $T \leq T_{b}$. AWGN with power spectral
density $N_{0} / 2$, and the $M L$ receiver is assumed. It is required that the bit error probability must not exceed 10^{-9}. It is also required that the power spectral density satisfies $R(f) \leq$ $N_{0} / 2$ for all frequencies f (the information signal is intentionally "hidden" in the noise). Determine system and signal parameters above such that these two requirements are satisfied.

- $P_{b}=Q\left(\sqrt{2 \mathcal{E}_{b} / N_{0}}\right) \leq 10^{-9} \Rightarrow \mathcal{E}_{b} / N_{0} \geq 18$
- $R(f)=R_{b}\left|G_{r c}(f)\right|^{2}$ has maximum at $f=0$
- $R(0)=R_{b} A^{2} T^{2} / 4 \leq N_{0} / 2$ (check pulse shape)
- $\mathcal{E}_{b} / N_{0}=3 / 8 A^{2} T / N_{0} \geq 18$
- Hidden in noise: $A^{2} T / N_{0} \leq 2 /\left(R_{b} T\right)$
- P_{b} requirement: $A^{2} T / N_{0} \geq 48$
- Solution:
choose $T \leq T_{b} / 24$ and $A^{2}=48 N_{0} / T$

Non-ideal receiver conditions

Example 4.15: unexpected additional noise w_{x}, i.e., $w=w_{N}+w_{x}$

Can be analyzed with our methods

Non-ideal receiver conditions

Example 4.16: hostile bursty interference

Observe: at low power an interference in bursts is more severe than continuous interference

[^0]: \Rightarrow antipodal signaling requires 3 dB less energy for equal P_{b}

