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The Channel N-ray Channel Model
» The channel is often modeled as time-invariant filter with noise g )Icrz,T:;?;;ﬁggltiﬁzti,%gseis,véirrz(?oigds\év\i,r;zsj%fgzr:;a;astwsitted signal
Channel w(?) » Such multi-path propagation motivates the N-ray channel model
(t) z(t) r(t)
h(t) )
x(©) Z0
» h(t) is the channel impulse response and w(r) the additive noise » The output signal becomes

» The received signal becomes N

o 2(t) =Y aix(t— 1) = x(1) % h(2)
F(1) = x(t) % (1) + w(t) = / h(T)x(t —7) dT+ wl(7) P

) ) - » The impulse response k() and its Fourier transform are given by

» The simplest case is an attenuated noisy channel: -

N N )
h(t) = ad(t) = r(r) = as(r)+w(r) h(t) = ; «8(t—m), H(f)=) e /™5

i=1
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Example 3.19: multipath propagation

Delay 2 us
Delay 1 us

& 3 tus]
so®) z4(t) -0.01A

A 0<t<10°¢
s1(t) = —so(t) = { e

0 , otherwise
a; =0.01,0p = —0.01,03 = 0.01

» The channel (= filter) increases the length of the signals

» Signals exceed their time interval and will overlap if 7 is not
increased accordingly = inter-symbol interference (I1Sl)
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Features of Multipath Channels

Challenges:

the receiver needs to know the channel

training sequences need be transmitted for channel estimation
the impulse response can change over time

the line-of-sight (LOS) component is sometimes not received

v

v

v

v

Opportunities:
» with multiple paths we can collect more signal energy
» receiver can work without direct LOS component

» channel knowledge, once we have it, can give useful information:
Examples: distance, angle of arrival, speed (Doppler)

» positioning/navigation is often based on channel estimation

If you want to know more:
EITN85: Wireless Communication Channels, VT 1
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Example 3.20

EXAMPLE 3.20
Calculate and sketch |H(f)|? for the 2-ray channel model.

Solution:
From (8.128) we obtain,

H(f) = aie 7™ 4 qpemi2nim
— I (Oél +a26*12ﬂf("2*"1))
HHPP = (041 +a2€7127rf(72771)) (Ou +(¥26+J2rf(7rn)) —

- dtdltaa (cmf(rz—n) +L,—mf<rz—m) —

= a? + aﬁ + 200102 cos(2m f (T2 — 71))

IH(F)12
(0‘1+0‘2)2
2
o)
@ %) ; ; £ [Hz]
1 2
SR

Channel fading: some frequencies are attenuated strongly
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Channel Noise

» In almost all applications the received signal r(¢) is disturbed by
some additive noise N(z):

r(f) =z(t) +N(1)

3

P

2

1

N/

1 |.|.’,. il H I M e
Rk

-2

-3

» Since the received noise disturbs that transmitted signal, we
need to characterize its influence on the performance
in terms of bit error rate or achievable information bit rate
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White Gaussian Noise Filtered Gaussian Noise

» White Gaussian noise w(¢) is a common model for background » In reality we usually deal with filtered noise of limited bandwidth,
noise, such as created by electronic equipment so-called colored noise
» The samples of w(r) have a zero-mean Gaussian distribution > Assuming that white Gaussian noise w(r) passes a filter v(1) we

obtain colored noise c(¢) with power spectral density

R() = RulF) V()P = 22 V)P

» For an ideal bandpass filter v(¢) with bandwidth W the spectrum

» Any two distinct samples of w(z) are uncorrelated

r(7) = E{w(t+ 1) w(t)} = % 5(7)

» This leads to a constant power spectral density is shown below:
Ry(f) = / rw(t)e ?H T dr = % , —eo<f<oo "o o0
Ry, ()
Ny/2 R
N,
£ [Hz) N,/2
0 ‘ ‘ > f[Hz]
fC fC
All frequencies are disturbed equally strongly
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Filtered Gaussian Noise The Q(x)-function
» Since R(f) is constant within the bandwidth W, such a process o
¢(z) is usually referred to as "white" bandpass process
» Let the noise process c(z) be sampled at some time t =#,. Then )
the sample value c(zy) is a Gaussian random variable with 0 3
1 2 /a2
_ —(c—m)*/20 ,
pc)= € 107 ¢ ‘ ‘ : : ; ; ; ; 3
(c) V2n o2 G Z L
with mean m = 0 and variance 6> = Ny/2 E, = NgW = P, o ]
» Our bit error probability is related to the probability that the noise -
value ¢(1) is larger than some threshold A .
10 & |
c(to)—m _ A—m A—m
P ty) > A} =P > = -
rlet) 24y = pr{ 0L Ao g (4 |
» The Q(x)-function is defined as
10—723)5 l; 0‘5 1‘ 1‘5 ‘2 2.‘5 I‘i 3‘5 4‘4 4‘5 5

Ox) = /xm \/% e dy = %erfc (\%)
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The Q(x)-function Chapter 4: Receivers

x Q(z) T Q(x) T Q(z) T Q(z)
0.0 | 5.0000e-01 | 3.0 | 1.3499¢-03 | 6.0 | 9.8659¢-10 | 9.0 | 1.1286e-19 ) A
03 | aS0racor | &3 | Gc0d | 63 | 310 | 83 | 1780930 blil HS(‘) H’“) };’[‘]
. . - B 5.2 .8232¢- 9. . 7897e- i i
0.3 | 3:8209e-01 | 3.3 6.3 | 1.4882e-10 | 9.3 | 7.0223e-21 0.1 Transmitter Channel Receiver o1
04 | 314458¢-01 | 3.4 6.4 | 77688e-11 | 94 | 2728221 {0.1} {0.1}
0.5 | 3.0854e-01 | 3.5 6.5 | 40160e-11 | 95 | 1.0495¢-21
0.6 | 2.7425e-01 | 3.6 6.6 | 2.0558e-11 | 9.6 | 3.9972e-22
0.7 | 2:4196e-01 | 3.7 6.7 | 1.0421e-11 | 9.7 | 1.5075e-22 io . ioits ication svs
0.8 | 2.1186e-01 | 3.8 6.8 | 52310e-12 | 9.8 | 5.6293¢-23 Figure 4.1: A digital communication system.
0.9 | 1:8406¢-01 | 3.9 6.9 | 2:6001c-12 | 9.9 | 2:0814e-23
1.0 | 1.5866e-01 | 4.0 7.0 | 1.2798-12 | 10.0 | 7.6199e-24
11 | 1.3567e-01 | 4.1 7.1 | 6:2378¢-13
1.2 | 1.1507e-01 | 4.2 72 | 3:0106e-13
13 | 9:6800e-02 | 4.3 73 | 1.4388¢-13 .
14 | 8.0757e-02 | 4.4 74 | 6.8092c-14
15 | 6.6807e-02 | 4.5 755 | 3.1909e-14 08 3
16 | 5.4799¢-02 | 4.6 7.6 | 1.4807e-14 = o6 <
1.7 | 4.4565e-02 | 4.7 7.7 | 6.8033¢-15 = =
1.8 | 3.5930e-02 | 4.8 7.8 | 3.0954e-15 S 04 T
1.9 | 2.8717e-02 | 4.9 7.9 | 1.3945¢-15 02 i I \ “ M
2.0 | 2.2750e-02 | 5.0 8.0 | 6.2210e-16 Rl TRATAR LY LR LR S
2.1 | 1.7864e-02 | 5.1 8.1 | 2.7480e-16 0 ST | ]YH eyl I “ i LT
22 | 1:3903¢-02 | 52 8.2 | 1:2019e-16 02 /T
23 | 1.0724e-02 | 5.3 8.3 | 5.2056e-17 o4
24 | 81975¢-03 | 5.4 8.4 | 2:232de-17 -
25 | 6.2097¢-03 | 5.5 8.5 | 9.4795¢-18 06
2.6 | 4.6612e-03 | 5.6 | 1.0718e-08 | 8.6 | 3.9858¢-18 o8
2.7 | 314670e-03 | 5.7 | 5.9904¢-09 | 87 | 1.6594e-18 -
2.8 | 2:5551e-03 | 5.8 | 3:3157e-09 | 8:8 | 6.8408¢-19 -
2.9 | 1.8658¢-03 | 5.9 | 1.8175e-09 | 8.9 | 2:7923e-19
Q(1.2816) ~ 10 " | Q(5.1993) ~ 10
Q(2.3263) ~ 1072 5.6120) ~ 107% H H
0902 = 10°5 | (50078 ~ 10 » How can we estimate the transmitted sequence?
Q(3.7190) ~ 10~ | Q(6.3613) ~ 107'° . .
QL2619 = 107 | Q(6.7060) = 10~ » Is there an optimal way to do this?
Q(4.7534) ~ 1075 | Q(7.0345) ~ 102
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Bit error probability The Detection Problem
» Because of the noise the receiver will sometimes make errors NGO
» During a time interval T we transmit the sequence b of length A
m[0]=m;j M-1 | Sj® zj(t) w(t) | Receiver m[0]
—= {S/z(l)})@_o ——= h(t) ——= based on r(t) —=
B=Ry7T = in 0<t<Tg

v

The detected (estimated) sequence b will contain B,,. bit errors
Assumptions:

» Arandom (i.i.d.) sequence of messages m[i] is transmitted

» There are M = 2* possible messages, i.e., k bits per message
All signal alternatives z(¢), £ =1,...,M are known by the receiver
T is chosen such that the signal alternatives z,(¢) do not overlap
N(z) is additive white Gaussian noise (AWGN) with Ry (f) = Ny/2

Berr = dH(baf)) <B

v

The Hamming distance dy(b,b) is defined as the number of
positions in which the sequences are different

v
v

The bit error probability P, is defined as

v

v

E{du(b.b)}
B Questions:

Py LPribl] # i) =

» How should decisions be made at the receiver?
» What is the resulting bit error probability P,?

v

It measures the average number of bit errors per detected
(estimated) information bit
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An optimal decision strategy Structure of the general MAP receiver

» We know that one of the M messages must be the best
» Hence we can simply test each my, £=0,1,... M —1

» Suppose we want to minimize the symbol error probability P
» That means we maximize the probability of a correct decision

Pr{m=(r(1)) | r(t)}

MAP-receiver

|
i 1
|
. U
where m denotes the transmitted message i Pr{m=mq Ir(t)} g i
| |
» This leads to the following decision rule: ! U, |
| Pr{m=m, Ir(t)} !
- BLUNER SELECT | I
m(r(t)) =my , mt/—“ roceived ; LARGEST | |+ M
where (= argmlaxPr{m =my|r(t)} f::ssage QIOI:Z“ i ' !
|
i i P Ir() Y1 |
. . . e rHim=m Ii
» We decide for the message that maximizes the probability above ! =m0 |
» A receiver that is based on this decision rule is called e ’

maximum-a-posteriori probability (MAP) receiver
This receiver minimizes the symbol error probability P

A slightly different decision strategy The Minimum Euclidean Distance Receiver
O » The received signal is compared with all noise-free signals z;(r)
t

» The message is selected according to the following decision rule:
Receiver based
t
memj N 20— i w(r(f)) = m |
0<t<Ts

where ¢ =argmin D2,
; :

Remark:
for equally likely messages, P;=1/M,i=0,1,....M — 1,
this receiver is equivalent to the MAP receiver

v

» Instead of computing posterior probabilities, we can check which
waveform z,(r) is most similar to the received signal r(r)

» A measure of similarity is the squared Euclidean distance

v

An implementation is often based on correlators with output
Ts 2 Ts )
Dl = /o (r(t) —z(1)) dz:/o (1) = 2r() 2i(t) + 27 (1) dt /T‘ WOa(t) de, =01, M—1
0

T
:E,—z/ r(t)zi(t) dt+E;
0

» We can write
Ty
» A signal alternative z;(¢) is similar to r(z) if Df’i is small ¢ = argmin Df’i = argmax / r(t)zi(t) dt—E;/2
The receiver needs to know the channel! l P
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The Minimum Euclidean Distance Receiver

Correlation based implementation:

! RECEIVER !
! 0 Eo/2 |
\ Ts g |
| —= [t ()2 !
| 0 !
: z1(t) -E1/2 }
N | Ts :
| — [ O =2 =
r(t) ! SELECT !
z(t) ——= ) 0 . |
| : : LARGEST !
M-1 ‘ |
{ze (O} !
207220 ! 21 ® EM-1/2 !
| T !
I I
: f( )t = éM»l :
| 0 |
I I
| |

For M-ary constellations with fixed pulse shape g(7) the
implementation can be further simplified

Michael Lentmaier, Fall 2017 Digital Communications: Week 3, Lecture 2

Example 4.4: 64-QAM receiver
The implementation of this receiver is shown below:

cos(w ) 9(t)

-sin( mct) a(t) Decision

The complezity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

= these parts are very similar to the transmitter
» integration and comparison can be performed separately
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Example 4.4: 64-QAM receiver

Assume that {zAt)ﬁEl is a 64-ary QAM signal constellation. Draw a block-diagram
of a minimum Euclidean distance receiver that uses only two integrators.

Solution:

A QAM signal alternative can be written as zi(t) = Aig(t) cos(wet) — Big(t) sin(wet),
where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
18,

Ts Ts Ts
r(t)z; = A; r(t)g(t) cos(wet)dt —B; r sin(we =
[ st | g eostnie = [ rog(osingnd

-y

Observe that x and y do not depend on the index i.

Hence, a possible implementation of the receiver is to first generate x and y, and then
calculate the M correlations Ajx + Byy, 1 =0, 4,...,M — 1. By subtracting the value
E;/2 from the i:th correlation, the decision variables &o, . ..,Em—1 are finally obtained.
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A geometric interpretation

» Our receiver computes: (maximum correlation)
max{xA;+yB; —Eg/2}
1

» Equivalently we can compute: (minimum Euclidean distance)

_ AE\? BiE,\?
e (x_ 2>+y_ 2

Ex. QPSK: received point (x,y) is closest to the point of message m3

T = message points, ¢ = noisy received values (z,y)

y

_ A,=1
Ay=1 « Eg2 «
B,=1 B,=1

T T > X

'EQ/QE i Eg/2 ® (x,y) = noisy received values
A0=-1 x 9 X Ag=1
By=1 By=-1
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