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Fourier transform Some useful Fourier transform properties
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Some useful Fourier transform properties Spectrum of time-limited signals

» Consider two signals x(r) and y(¢) and their Fourier transforms » Consider some time-limited signal s7(¢) of duration T, with
x(t) «— X(f), y(@) +— Y() st(ty=0forr<Oandr>T
» Assume that within the interval 0 < ¢ < T, the signal s7(¢) is equal

» Recall the convolution operation z(r) = x() * y(¢): 1o some signal s(1), i.e

(1) y(t)

A B ‘ ST(t) :s(t)'grec(t) )

where g..(1) is the rectangular pulse of amplitude A =1
» Taking the Fourier transform on both sides we get

T 10t 111 St(f) = S(f) * Grec(f) =S(f) * AT Sm:;ij;r) e ImfT

» Since G, (f) is unlimited along the frequency axis, this is the
case for S7(f) as well (convolution increases length)

» Filtering:

x(1) * y(1) «— X(f)-Y(f)
» Multiplication:
Time-limited signals can never be strictly band-limited

(1) - y(1) = X(f) = Y(f)
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Some definitions of bandwidth Some definitions of bandwidth

» Main-lobe definition:
Wiobe is defined by the width of the main-lobe of R(f) Pulse shape | Wiose | % power Woo Wag Woo.0 Asymptotic
This is how we have defined bandwidth in previous examples in Wiope decay

» In bgsepand we use the one'-sid(?d width, whi_It_—:' in bandpags iflc iﬁ 33? ﬁgﬁ Zoegg g%i//g §*4
applications the two-sided width is used (positive frequencies) hes 3/T 99.5 1.56/T | 2.36/T | 5.48)T I

» Percentage definition: re 4/T 99.95 | 1.90/T | 2.82/T | 3.46/T .f‘°
Woo is defined according to the location of 99% of the power Nyquist s 100 | 09K, | 0-9R, | 0.99R, | ideal

» For bandpass signals Wy is found as the value that satisfies
Table 2.1: Double-sided bandwidth results for power spectral densities according

fet+Wog /2 bl to (2.212). The grec(t), giri(t), gnes(t) and g,.(t) pulse shapes are defined in
/ Wea /2 R (f) df =0.99 /0 R (f) df Appendix D, and T denotes the duration of the pulse. The Nyquist pulse shape
Je=Woo/ is not limited in time and it is defined in (D.49) with parameters § = 0 and
» Other percentages can be used as well: Wy, Wog 9 T =T,
» Nyquist bandwidth
Assuming an ideal pulse with finite bandwidth (see Chapter 6)

Ry
2

» This table is useful for PAM, PSK, and QAM constellations

Wiyg = - [Hz] » Except bandwidth W, the asymptotic decay is also relevant
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From last lecture: general R(f) R(f): M-ary PAM signals

» The power spectral density R(f) can be divided into > With M-ary PAM signaling we have
a continuous part R.(f) and a discrete part Ry(f) se=Apg(t), £=0,1,....M—1
R(f) = Re(f) + Ra) » Then

M—1
Se(f) =A¢G(f), and A(f)= P/AG
» The general expression for the continuous part is ) 161 ") z;) tAcGU)

| M=1 » With this we obtain the simplified expression
RC(f) - ? Z Py |Sn(f)*A(f)|2 o2 5 m2 ) oo
S p—
"0 R(f)=Z2IGHI? + 2 IGHP Y 8(F—n/Ty),
M1 2 T T =
(LY ris.r _ani ' "
T, = " T, where m, denotes the mean and o3 = E,/E, —m the variance of
the amplitudes A,
» For the discrete part we have » Assuming zero average amplitude my = 0 and using P = o3 E, R,
AP & this reduces to
Ry(f) = 8(f —n/T;) o P
T3 n;m Y R(f) =R(f) = 22 |G = — |G
T E,
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Example 2.28 What does bandwidth efficiency tell us?
Assume the bit rate Ry = 9600 [bps], M-ary PAM transmission and that ma = 0. In the previous example we had a bandwidth efficiency of
Determine the (baseband) bandwidth W, defined as the one-sided width of the mainlobe
of the power spectral density R(f), if M =2, M = 4 and M = 8, respectively. Fur- _ Ry —k
thermore, assume a rectangular pulse shape with amplitude Ay, and duration T = Ts. - W -
Calculate also the bandwidth efficiency p. . .
Saving bandwidth
» What is W for a given pulse shape and different M? » The previou; example showed that the bandwidth W can be
» Using T =T, my =0 and g() = grc(t), we have reduced by |nlcreasmg M.
» T =T,=kT, increases with M
R(f) = Gj G ()2 » W=1/T =R,/k decreases accordingly
T
» For the given pulse we get W = 1/T;, where T, = k T}, Improving bit rate

» Assume instead that the bandwidth W is fixed in the same
k=1 = M=2 = W=9600[Hz] example, i.e., the symbol duration T, = T is fixed
k=2 = M=4 = W =4800[Hz] » Then R, = kW increases with M
k=3 = M=8 = W=23200[Hz] » Assume for example W = 1 MHz:
R, =1MbpsifM =2 (k=1)

» Bandwidth efficiency: p =R,/W =k T,,/Tp =k R, = 10Mbps if M = 1024 (k = 10)
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R(f): M-ary QAM signals
» With M-ary QAM signaling the signal alternatives are

so(t) =Ag g(r) cos(2m f, 1) — By g(t) sin(2n f. 1), £=0,1,....M—1

» Then the Fourier transform becomes

G(f+fc) + G(f_fc) — jBy G(f+fc) — G(f_fc‘)
2 2

= (a8 ST 1 (a4 jm) U

Se(f) = Ag

» Assuming a zero average signal a(r) =0 and f. T > 1 this

simplifies to
=G 2+ [G(f 1))
RY) R () — P JCUFIP 166 )
2E,
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Example

Bandwidth consumption for BPSK, QPSK and 16-QAM
assuming equal R, and f. = 100R,,

/R,
99 '%Qb 101 102

RyR(f)/P in dB: M-ary QAM and gy, (t)

o] m m

50 /

Figure 2.20: The power spectral density for binary QAM (BPSK, widest main-
lobe), 4-ary QAM (QPSK), and 16-ary QAM (smallest mainlobe). The figure
shows 10log;o(RyR(f)/P) [dB] in the frequency interval 98R, < f < 102Ry.

The carrier frequency is f. = 100R;, [Hz], and a T = kT} long gnes(t) pulse is
assumed. See also (2.227) and (2.230).
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R(f): M-ary QAM signals

» Remember that M-ary QAM signals contain M-ary PSK and
M-ary bandpass PAM signals as special cases:

BP-PAM: B, =0
PSK: A= COS(VZ) , Bp= SiIl(Vg)

» = our results for R(f) of M-ary QAM signals include these cases
» For symmetric constellations, such that a(r) = 0, the simplified
version applies

» The bandwidth W is determined by |G(f —f.)|> and hence the
two-sided main-lobe of |G(f)|?

= if the same pulse g(r) is used then M-ary QAM, M-ary bandpass
PAM and M-ary PSK have the same bandwidth W
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R(f): M-ary FSK signals

» With M-ary frequency shift keying (FSK) signaling the signal
alternatives are

se(t)=A cosu fyt + v), 0<r<T;
» Choosing v = —x/2 this can be written as
5e(t) = grec(t) sin2mfpt), withT =Ty,

since sy(t) = 0 outside the symbol interval
» The Fourier transform is then

SZ(f) :] Grec(f+fc) ; Grec(f_fc)

» The exact power spectral density R(f) can now be computed
by the general formula (2.202)—(2.204)
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R(f): M-ary FSK signals Example 2.36

» Let us find an approximate eXpreSSion for the FSK bandwidth W Assume that orthogonal M-ary FSK is used to communicate digital information in the
frequency band 1.1 < f < 1.2 [MHz].
> Assume that For each M below, find the largest bit rate that can be used (use bandwidth approxima-
fe=fo+Llfa, €=0,....M—1 tions):
. . i) M =2 ii) M =4 iii) M =8 iv) M =16 M =32
» Then the bandwidth W can be approximated by 4 # ) @) K
Which of the M-values above give a higher bit rate than the M = 2 case?
W%Rs +fM71 *f0+R5:(M*1)fA+2RS Solution:
It is given that Wy —psik = 100 [kHz]. From (2.245), the largest bit rate is obtained
. . ith I = 1:
» Consider now orthogonal FSK with f4 =1-R,/2 for some I >0 v Ry~ 10° . —1o82(M)
» The bandwidth efficiency is then (M -1)/2+2

Ry, _ Ry Ry log, M M| s Ry

=== = = 2] % =04 40 kbps

w M —1)fa+2R; M—1)I/2+2)R M—-1)1/2+2 5/2
( Ma+2R (( 2+2)Rs )1/ 4] 2 =$~05714 | ~ 57 kbps
8 | 125 = & ~0.5455 | ~ 55 kbps
Observe: the bandwidth efficiency of orthogonal M-ary FSK gets 161 4 =8 04211 | ~ 42 Kbps
mall if M is large 1972 = 19 ~ 0. ~ 42 kbp
S 32 | 325 = 32 ~ 0.2857 | ~ 29 kbps

Last week we saw: M-ary FSK has good energy and Euclidean
distance properties = trade-off
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R(f): OFDM-type signals

» An OFDM symbol (signal alternative) x(¢) can be modeled as a
superposition of N orthogonal QAM signals, each carrying k, 004
bits, that are transmitted at different frequencies (sub-carriers)

R(f): OFDM-type signals

lllustration of R, (f) contributed by three neighboring sub-carriers:

o
Q
@

N—1

x(1) = ;) Sn,0am (1)

Subchannel contributions
o o
o o
= o

» Assuming each QAM signal has zero mean and that the different
carriers have independent bit streams we get

0’96 98 100 102 104 106

T
N-—1
R(f) =Re(f) =R E{QX(NI*} = ¥ Ru(f) » Assuming f, = fo+n/(Ts — A;) we can estimate the bandwidth as
n=0 N+1
_ , _ _ Wz(N+1)fA:;RszN~RS, N>1, A <T;
» Using our previous results for QAM in each sub-carrier we get 1—Ay/Ts

N—1 2 2
k) ) ¥ P 1L+ 10U 1)
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» The bandwidth efficiency is then approximated by

_ Ry B Rstl

1 N—1
p= == kn =~ — ky [bps/Hz]
w W= N kgb
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Example: R(f) for OFDM Example 2.35

Lo e L0047 ADSL.: uses plain telephone cable (twisted pair, copper)
70 I
I -
; -109 E 008 POTS: telephony, modem, FAX
= -20 %002 i
?5 5 Power
é —30 é Zpec;ral ADSL uplink ADSL downlink
H £ 0017 ensity ~64-1024 kbps ~0.5-8 Mbps
\5_407 § T f T — f [kHz]
S ol 0790 160 o 120 130 04 25 138 104
= T In ADSL, a coded OFDM technique is used. The level of the power spectral density
in the downstream is roughly -73 dB. As a basic ezample, let us here assume that the
OFDM symbol rate in the downlink is 4000 [symbol/s], and that the subchannel carrier
. spacing is 5 kHz. Furthermore, it is here also assumed that uncoded 16-ary QAM is
» N =16 sub-carriers used in each subchannel (assumes a very “good” communication link).
» T = T_y =0.1 [ms] For the ADSL downlink above, determine the bit rate in each subchannel, the total bit
rate, and the bandwidth efficiency.
> fo =R,/0.95 = 10.53 [kHz]
~ 17 —
> W ol R, =179 [kHz]
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What about filtering away the side-lobes? Nyquist Pulse
» Let us use a spectral rectangular pulse Xg..(f) of amplitude A =1 et o
. . P . nc Xnc(t
and width f, to strictly limit the bandwidth "I 1
. . . . /R, . =Ts
» Similar to the time-limited case we can write YoEnyq Rnyq7¢\5 X0 Rnyg
= . £1H e~y LN Ny t
Sfa (f) = S(f) - Xsree (f) ~Rpyq/2 Rpyq/2 i ~T RS ‘ \/}e{M ‘
a) b) 1
Rnyq

» Taking the inverse Fourier transform on both sides we get
Figure 6.6: a) Ideal Nyquist spectrum; b) Ideal Nyquist pulse.

sin(7mfyt
SfA(l) =5(1) * Xyree(t) = 5(1) * Afo %
rell) = 10%7 —oo <t <o (6.39)
> Since xye.(7) is unlimited along the time axis, this is the case for Io/R:yZ f| < Ruya/2 ,
the filtered signal s, (1) as well Xoelf) { : IS o2 o)

» The signal x,..(r) defines the ideal Nyquist pulse

As a consequence of filtering, the transmitted symbols will
overlap in time domain = inter-symbol-interference (ISI)
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How can we further improve p? Example: discrete frequencies in R(f)

MIMO MODEL Assume M =2

Let so(r) = 0 and s1(¢) = 5 with a pulse duration T =T,/2

v

=z
=
v

d, : "
; é : » With this the average signal becomes
dni/ [ \{/_é_’(. i ‘ a(t):SO(t);sl(t) :25 , OSIST

Nt

/./ Nr

dy, Ny

mFCD ZO-0-0mO
v

We can then write (within the pulse duration T)

so(t)==25+a(t), s1(t)=+25+a(r)

N
TR = E g ndy + Wi

n=1

Observe:
MIMO: multiple-input multiple output 1. this method is a waste of signal energy since a(r) does not carry
transmission over multiple antennas in the same frequency band any information

challenge: the individual wireless channels interfere
5G world record 2016: (team from Lund involved)
spectral efficiency of 145.6 bps/Hz with 128 antennas

2. repetition of a(z) in every symbol interval creates some
periodic signal component in the time domain, which leads
to discrete frequencies in the frequency domain

vV vy vVvYy
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