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Fourier transform
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Z •
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Some useful Fourier transform properties

Appendix C

Fourier Transform Pairs

The function g(t) below is real- or complex-valued.

g(t) � G(f) =

Z �

��
g(t)e�j2�ftdt (C.1)

g(at) � 1

|a| G(f/a) (C.2)

g(�t) � G(�f) (C.3)

G(t) � g(�f) (C.4)

g(t � t0) � G(f)e�j2�ft0 (C.5)

g(t)ej2�fct � G(f � fc) (C.6)

d

dt
g(t) � j2�f G(f) (C.7)

Z t

��
g(x)dx � 1

j2�f
G(f) (C.8)

g�(t) � G�(�f) (C.9)
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g1(t)g2(t) �
Z �

��
G1(x)G2(f � x)dx = G1(f) ⇤G2(f) (C.10)

g1(t) ⇤ g2(t) =

Z �

��
g1(x)g2(t� x)dx� G1(f)G2(f) (C.11)

g�(T � t) � G�(f)e�j2�fT (C.12)

�(t) � 1 (C.13)

1(dc) � �(f) (C.14)

ej2�fct � �(f � fc) (C.15)

cos(2�fct) � 1

2
(�(f + fc) + �(f � fc)) (C.16)

sin(2�fct) � j

2
(�(f + fc)� �(f � fc)) (C.17)

e��t2 � e��f2

(C.18)

�e���2t2 � e��f2/�2

(C.19)

If the signal s(t) is periodic with fundamental frequency f0, then s(t) = s(t +
n/f0), n = 0, ±1, ±2, . . ., and

s(t) =
��

n=��
cnej2�nf0t  ! S(f) =

��

n=��
cn�(f � nf0) (C.20)

where the complex Fourier coe�cients are (T0 = 1/f0),

cn =
1

T0

Z T0/2

�T0/2
s(t)e�j2�nf0tdt = c�

�n (C.21)
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! full list in Appendix C of the compendium
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Some useful Fourier transform properties
I Consider two signals x(t) and y(t) and their Fourier transforms

x(t)  ! X(f ) , y(t)  ! Y(f )

I Recall the convolution operation z(t) = x(t) ⇤ y(t):

66 Chapter 2. Model of a Digital Communication System

Filtering and multiplication:

Filtering and multiplication of signals, in the time domain, are two very common
operations, and the frequency content after these operations is found by using
the pair of Fourier transform relationships below,

Filtering: x(t) ⇤ y(t)  ! X(f)Y (f) (2.155)

Multiplication: x(t)y(t)  ! X(f) ⇤ Y (f) =

Z �

��
X(�)Y (f � �)d� (2.156)

Hence, convolution in the time domain corresponds to multiplication in the
frequency domain, and vice versa.

EXAMPLE 2.18
As a basic example we assume that two signals x(t) and y(t) are given as,

x(t)

A

τ

y(t)

B

10τ
tt

Calculate the filtered output signal z(t) = x(t) � y(t) = �
�� y(�)x(t � �)d�.

Solution:
Solving the integral graphically we obtain:

τ

z(t)

AB τ

10τ 11τ
t

�

Observe in the example above that the filtered output signal z(t) has a duration
Tz = Tx + Ty = � + 10� = 11� . We may here interpret these results as “filtering
in time spreads in time”, and also “multiplication in time spreads in frequency”.

2.5.1.1 Frequency Shift Operations

In many communication applications it is necessary to shift (translate) the
frequency content of a signal g(t) to another location on the frequency axis.
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Observe in the example above that the filtered output signal z(t) has a duration
Tz = Tx + Ty = � + 10� = 11� . We may here interpret these results as “filtering
in time spreads in time”, and also “multiplication in time spreads in frequency”.

2.5.1.1 Frequency Shift Operations

In many communication applications it is necessary to shift (translate) the
frequency content of a signal g(t) to another location on the frequency axis.

z(t) = x(t) ⇤ y(t) =

Z +�

��
y(�) · x(t � �) d�

I Filtering:
x(t) ⇤ y(t)  ! X(f ) ·Y(f )

I Multiplication:

x(t) · y(t)  ! X(f ) ⇤ Y(f )
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Spectrum of time-limited signals
I Consider some time-limited signal s

T

(t) of duration T, with
s

T

(t) = 0 for t < 0 and t > T

I Assume that within the interval 0 t  T, the signal s

T

(t) is equal
to some signal s(t), i.e.,

s

T

(t) = s(t) ·g

rec

(t) ,

where g

rec

(t) is the rectangular pulse of amplitude A = 1
I Taking the Fourier transform on both sides we get

S

T

(f ) = S(f ) ⇤ G

rec

(f ) = S(f ) ⇤ AT

sin(p f T)

p f T

e

�jp f T

I Since G

rec

(f ) is unlimited along the frequency axis, this is the
case for S

T

(f ) as well (convolution increases length)

Time-limited signals can never be strictly band-limited
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Some definitions of bandwidth
I Main-lobe definition:

W

lobe

is defined by the width of the main-lobe of R(f )
This is how we have defined bandwidth in previous examples

I In baseband we use the one-sided width, while in bandpass
applications the two-sided width is used (positive frequencies)

I Percentage definition:
W99 is defined according to the location of 99% of the power

I For bandpass signals W99 is found as the value that satisfies
Z

f

c

+W99/2

f

c

�W99/2
R(f )df = 0.99

Z •

0
R(f )df

I Other percentages can be used as well: W90, W99.9
I Nyquist bandwidth

Assuming an ideal pulse with finite bandwidth (see Chapter 6)

W

nyq

=
R

s

2
[Hz]
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Some definitions of bandwidth86 Chapter 2. Model of a Digital Communication System

Pulse shape Wlobe % power W90 W99 W99.9 Asymptotic
in Wlobe decay

rec 2/T 90.3 1.70/T 20.6/T 204/T f�2

tri 4/T 99.7 1.70/T 2.60/T 6.24/T f�4

hcs 3/T 99.5 1.56/T 2.36/T 5.48/T f�4

rc 4/T 99.95 1.90/T 2.82/T 3.46/T f�6

Nyquist Rs 100 0.9Rs 0.99Rs 0.999Rs ideal

Table 2.1: Double-sided bandwidth results for power spectral densities according
to (2.212). The grec(t), gtri(t), ghcs(t) and grc(t) pulse shapes are defined in
Appendix D, and T denotes the duration of the pulse. The Nyquist pulse shape
is not limited in time and it is defined in (D.49) with parameters � = 0 and
T = Ts.

f = 0) the bandwidth values given in Table 2.1 should be divided by two to
obtain the corresponding baseband one-sided bandwidths.

Table 2.1 is especially useful for M-ary PAM, M-ary PSK, and M-ary QAM
signal constellations.

In Example 2.26 below the spectral properties of the pulses grec(t), ghcs(t), and
grc(t) are considered in some more detail. The coresponding energy spectra are
shown in Figure 2.19.

EXAMPLE 2.26
Figure 2.19 shows 10 log10

|G(f)|2
EgT [dB], in the frequency interval 0 � f � 8/T [Hz],

for three (baseband) pulse shapes with duration T .

Identify the curve corresponding to each pulse shape.

Solution:
The energy spectra |Grec(f)|2, |Ghcs(f)|2 and |Grc(f)|2 are given in Appendix D. Using
these expressions we obtain:

Rectangular pulse grec(t): The curve corresponding to zeroes at
f = 1

T , 2
T , 3

T , . . .
This curve also has the slowest rate
of decay of the side-lobes (� f�2).

Half cycle sinusoidal pulse ghcs(t): The curve corresponding to zeroes at

f = 3/2
T , 5/2

T , 7/2
T , . . .

Raised cosine pulse grc(t): The curve corresponding to zeroes at
f = 2

T , 3
T , 4

T , . . .
This curve also has the fastest rate
of decay of the side-lobes (� f�6).

�

I This table is useful for PAM, PSK, and QAM constellations
I Except bandwidth W, the asymptotic decay is also relevant
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From last lecture: general R(f )

I The power spectral density R(f ) can be divided into
a continuous part R

c

(f ) and a discrete part R

d

(f )

R(f ) = R

c

(f )+R

d

(f )

I The general expression for the continuous part is

R

c

(f ) =
1
T

s

M�1

Â
n=0

P

n

|S
n

(f )�A(f )|2

=

 
1
T

s

M�1

Â
n=0

P

n

|S
n

(f )|2
!
� |A(f )|2

T

s

I For the discrete part we have

R

d

(f ) =
|A(f )|2

T

2
s

•

Â
n=�•

d (f �n/T

s

)
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R(f ): M-ary PAM signals
I With M-ary PAM signaling we have

s` = A` g(t) , ` = 0,1, . . . ,M�1
I Then

S`(f ) = A` G(f ) , and A(f ) =
M�1

Ầ
=0

P` A` G(f )

I With this we obtain the simplified expression

R(f ) =
s2

A

T

s

|G(f )|2 +
m

2
A

T

2
s

|G(f )|2
•

Â
n=�•

d (f �n/T

s

) ,

where m

A

denotes the mean and s2
A

= E

s

/E

g

�m

2
A

the variance of
the amplitudes A`

I Assuming zero average amplitude m

A

= 0 and using P = s2
A

E

g

R

s

this reduces to

R(f ) = R

c

(f ) =
s2

A

T

s

|G(f )|2 =
P

E

g

|G(f )|2
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Example 2.28

2.5. The Bandwidth of the Transmitted Signal 89

Solution:

Rc(f) =
1
Ts

M�1

n=0

Pn|Sn(f) � A(f)|2

where

A(f) =
M�1

n=0

PnSn(f) =
M�1

n=0

PnAnG(f) = mAG(f)

Rc(f) =
1
Ts

M�1

n=0

Pn(An � mA)2|G(f)|2 =
�2

A

Ts
|G(f)|2

R(f) = Rc(f) + Rd(f) =
�2

A

Ts
|G(f)|2 +

m2
A|G(f)|2

T 2
s

�

n=��
�(f � n/Ts)

and this is the final result. �

An important property of M-ary PAM signaling is that for a constant bit rate Rb,
the bandwidth can be decreased by increasing k (or M , since M = 2k).
This is illustrated in the example below.

EXAMPLE 2.28
Assume the bit rate Rb = 9600 [bps], M-ary PAM transmission and that mA = 0.
Determine the (baseband) bandwidth W , defined as the one-sided width of the mainlobe
of the power spectral density R(f), if M = 2, M = 4 and M = 8, respectively. Fur-
thermore, assume a rectangular pulse shape with amplitude Ag, and duration T = Ts.
Calculate also the bandwidth e�ciency �.

Solution:
It is given that T = Ts. From (2.219) and Example 2.21 (or (D.4)) we obtain R(f) as,

R(f) =
�2

A

Ts
|G(f)|2 =

�2
A

Ts
· A2

gT 2
s

sin(�fTs)
�fTs

2

F igure D.2

and R(1/Ts) = 0. So, the width of the one-sided mainlobe equals,

W =
1
Ts

=
1

kTb
=

Rb

k
[Hz]

This gives the following bandwidth results:

k = 1 (M = 2) � W = 9600 [Hz]
k = 2 (M = 4) � W = 4800 [Hz]
k = 3 (M = 8) � W = 3200 [Hz]

The bandwidth e�ciency � is obtained as,

� = Rb/W = k [bps/Hz]
�

I What is W for a given pulse shape and different M?
I Using T = T

s

, m

A

= 0 and g(t) = g

rec

(t), we have

R(f ) =
s2

A

T

s

|G
rec

(f )|2

I For the given pulse we get W = 1/T

s

, where T

s

= k T

b

k = 1 ) M = 2 ) W = 9600[Hz]
k = 2 ) M = 4 ) W = 4800[Hz]
k = 3 ) M = 8 ) W = 3200[Hz]

I Bandwidth efficiency: r = R

b

/W = k T

b

/T

b

= k
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What does bandwidth efficiency tell us?
In the previous example we had a bandwidth efficiency of

r =
R

b

W

= k

Saving bandwidth
I The previous example showed that the bandwidth W can be

reduced by increasing M

I
T = T

s

= k T

b

increases with M

I
W = 1/T = R

b

/k decreases accordingly

Improving bit rate
I Assume instead that the bandwidth W is fixed in the same

example, i.e., the symbol duration T

s

= T is fixed
I Then R

b

= k W increases with M

I Assume for example W = 1MHz:
R

b

= 1Mbps if M = 2 (k = 1)
R

b

= 10Mbps if M = 1024 (k = 10)
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R(f ): M-ary QAM signals

I With M-ary QAM signaling the signal alternatives are

s`(t) = A` g(t) cos(2p f

c

t)�B` g(t) sin(2p f

c

t) , ` = 0,1, . . . ,M�1

I Then the Fourier transform becomes

S`(f ) = A`
G(f + f

c

) + G(f � f

c

)

2
� j B`

G(f + f

c

) � G(f � f

c

)

2

= (A`� jB`)
G(f + f

c

)

2
+(A` + jB`)

G(f � f

c

)

2

I Assuming a zero average signal a(t) = 0 and f

c

T � 1 this
simplifies to

R(f ) = R

c

(f ) = P

|G(f + f

c

)|2 + |G(f � f

c

)|2

2E

g
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R(f ): M-ary QAM signals

I Remember that M-ary QAM signals contain M-ary PSK and
M-ary bandpass PAM signals as special cases:

BP-PAM: B` = 0
PSK: A` = cos(n`) , B` = sin(n`)

I ) our results for R(f ) of M-ary QAM signals include these cases
I For symmetric constellations, such that a(t) = 0, the simplified

version applies
I The bandwidth W is determined by |G(f � f

c

)|2 and hence the
two-sided main-lobe of |G(f )|2

) if the same pulse g(t) is used then M-ary QAM, M-ary bandpass
PAM and M-ary PSK have the same bandwidth W
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Example
Bandwidth consumption for BPSK, QPSK and 16-QAM
assuming equal R

b

and f

c

= 100R

b94 Chapter 2. Model of a Digital Communication System
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(t

)

Figure 2.20: The power spectral density for binary QAM (BPSK, widest main-
lobe), 4-ary QAM (QPSK), and 16-ary QAM (smallest mainlobe). The figure
shows 10 log10(RbR(f)/P̄ ) [dB] in the frequency interval 98Rb  f  102Rb.
The carrier frequency is fc = 100Rb [Hz], and a Ts = kTb long ghcs(t) pulse is
assumed. See also (2.227) and (2.230).

f  102Rb [Hz], if the carrier frequency is fc = 100Rb [Hz]. It is seen in this
figure that for equal bit rate Rb, 16-ary QAM is significantly more bandwidth
e�cient than both 4-ary QAM and binary PSK. The signal power P̄ , and the
bit rate Rb, are the same for the three schemes shown in Figure 2.20.

In Figure 2.20 a hcs pulse with duration Ts = kTb is assumed, and the expression
for the power spectral density R(f) in (2.227) can then, around the carrier
frequency fc = 100Rb, be expressed as,

R(f) =
P̄

Rb
· k4

�2

�
cos(�k(f � fc)/Rb)

1 � (2k(f � fc)/Rb)2

�2

(2.230)

EXAMPLE 2.31
Assume the pulse grc(t) with duration T = Ts, and a carrier frequency fc = 1 [MHz].
Due to bandwidth restrictions it is required that the double-sided bandwidth W99 must
satisfy W99 � 100 [kHz]. Calculate the bit rates that can be used with:

i) 16-ary bandpass PAM ii) 256-ary QAM

Solution:
From Table 2.1 on page 86: W99 = 2.82/Ts.

i) 16-ary bandpass PAM: W99 = 2.82
4 Rb � 100 [kHz]. So, Rb � 141.8 [kb/s].

ii) 256-ary QAM: W99 = 2.82
8 Rb � 100 [kHz]. So, Rb � 283.6 [kb/s].

Hence, 256-ary QAM is twice as bandwidth e�cient as 16-ary bandpass PAM is. �
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R(f ): M-ary FSK signals
I With M-ary frequency shift keying (FSK) signaling the signal

alternatives are

s`(t) = A cos(2p f` t + n) , 0 t  T

s

I Choosing n =�p/2 this can be written as

s`(t) = g

rec

(t) sin(2p f` t) , with T = T

s

,

since s`(t) = 0 outside the symbol interval
I The Fourier transform is then

S`(f ) = j

G

rec

(f + f

c

)�G

rec

(f � f

c

)

2

I The exact power spectral density R(f ) can now be computed
by the general formula (2.202)–(2.204)
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R(f ): M-ary FSK signals
I Let us find an approximate expression for the FSK bandwidth W

I Assume that
f` = f0 + ` fD , ` = 0, . . . ,M�1

I Then the bandwidth W can be approximated by

W ⇡ R

s

+ f

M�1 � f0 + R

s

= (M�1) fD + 2R

s

I Consider now orthogonal FSK with fD = I ·R

s

/2 for some I > 0
I The bandwidth efficiency is then

r =
R

b

W

⇡ R

b

(M�1) fD +2R

s

=
R

b�
(M�1) I/2+2

�
R

s

=
log2 M

(M�1) I/2+2

Observe: the bandwidth efficiency of orthogonal M-ary FSK gets
small if M is large
Last week we saw: M-ary FSK has good energy and Euclidean
distance properties) trade-off
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Example 2.36

102 Chapter 2. Model of a Digital Communication System

Note also that if f� � 2Rs then the approximation WM�FSK ⇡ M ·2Rs might
be more appropriate. Furthermore, if the rectangular pulse in (2.239) is replaced
by a non-rectangular pulse g(t), then (2.245) in general has to be modified (see
also Subsection 2.4.3.2).

EXAMPLE 2.36
Assume that orthogonal M-ary FSK is used to communicate digital information in the
frequency band 1.1 � f � 1.2 [MHz].

For each M below, find the largest bit rate that can be used (use bandwidth approxima-
tions):

i) M = 2 ii) M = 4 iii) M = 8 iv) M = 16 v) M = 32

Which of the M-values above give a higher bit rate than the M = 2 case?

Solution:
It is given that WM�F SK = 100 [kHz]. From (2.245), the largest bit rate is obtained
with I = 1:

Rb � 105 · log2(M)
(M � 1)/2 + 2

M log2(M)
(M�1)/2+2 Rb

2 1
5/2 = 0.4 40 kbps

4 2
7/2 = 4

7 � 0.5714 � 57 kbps

8 3
11/2 = 6

11 � 0.5455 � 55 kbps

16 4
19/2 = 8

19 � 0.4211 � 42 kbps

32 5
35/2 = 10

35 � 0.2857 � 29 kbps

From this table it is seen that M = 4, 8, 16 give a higher bit rate than M = 2. �
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R(f ): OFDM-type signals
I An OFDM symbol (signal alternative) x(t) can be modeled as a

superposition of N orthogonal QAM signals, each carrying k

n

bits, that are transmitted at different frequencies (sub-carriers)

x(t) =
N�1

Â
n=0

s

n,QAM

(t)

I Assuming each QAM signal has zero mean and that the different
carriers have independent bit streams we get

R(f ) = R

c

(f ) = R

s

E{|X(f )|2} =
N�1

Â
n=0

R

n

(f )

I Using our previous results for QAM in each sub-carrier we get

R(f ) = R

c

(f ) =
N�1

Â
n=0

P

|G(f + f

c

)|2 + |G(f � f

c

)|2

2E

g
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R(f ): OFDM-type signals
Illustration of R

n

(f ) contributed by three neighboring sub-carriers:

2.5. The Bandwidth of the Transmitted Signal 99
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Figure 2.21: 10 log10(R(f)/P̄T ) [dB] for
an example of OFDM with N = 16
subchannels. R(f) is given in
(2.237), and R(f)/P̄T is plotted
in Figure 2.22.
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Figure 2.22: R(f)/P̄T for an
example of OFDM with N = 16
subchannels. R(f) is given in
(2.237), and R(f)/P̄T in [dB]
is plotted in Figure 2.21.
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Figure 2.23: The individual contributions from subchannels n = 0, n = 1, and
n = 2 to the curve shown in Figure 2.22.

I Assuming f

n

= f0 +n/(T
s

�D
h

) we can estimate the bandwidth as

W ⇡ (N +1) fD =
N +1

1�D
h

/T

s

R

s

⇡ N ·R

s

, N� 1 , D
h

⌧ T

s

I The bandwidth efficiency is then approximated by

r =
R

b

W

=
R

s

W

N�1

Â
k=0

k

n

⇡ 1
N

N�1

Â
k=0

k

n

[bps/Hz]
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Example: R(f ) for OFDM
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I
N = 16 sub-carriers

I
T = T

s

= 0.1 [ms]
I

fD = R

s

/0.95 = 10.53 [kHz]
I

W ⇡ 17
0.95 R

s

= 179 [kHz]
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Example 2.35

ADSL: uses plain telephone cable (twisted pair, copper)

100 Chapter 2. Model of a Digital Communication System

EXAMPLE 2.34
Let us here continue to investigate the WLAN application considered in Example 2.15
on page 52.

Estimate the subchannel carrier spacing, and the total bandwidth if Ts = 4 [µs], and if
�h = 0.8 [µs].

Solution:
The subchannel carrier spacing is f� = 1/Tobs = 106/3.2 = 312.5 kHz.

The total bandwidth W is estimated by (see (2.235)),

W � (N + 1)f� = 49 · 106/3.2 = 15.3 [MHz]

�

EXAMPLE 2.35
In ADSL technology (Asymmetric Digital Subscriber Line) the ADSL signals use the
same twisted-wire (copper) pair as the plain old telephone system (POTS) does, [48],
[24]. ADSL signal transmission from the network (communication node) to the end
user (approximately 0.1–5 [km]) is referred to as the downlink (or forward channel).
ADSL signal transmission from the end user to the network is referred to as the uplink
(or reverse channel). In order to facilitate simultaneous operation of POTS, ADSL
downlink and uplink applications, a frequency division duplex arrangement may be used.
The figure below illustrates this method.

0 4 25 138 1104
f [kHz]

POTS: telephony, modem, FAX

Power
spectral
density ADSL uplink

   64-1024 kbps
ADSL downlink

0.5-8 Mbps

In ADSL, a coded OFDM technique is used. The level of the power spectral density
in the downstream is roughly -73 dB. As a basic example, let us here assume that the
OFDM symbol rate in the downlink is 4000 [symbol/s], and that the subchannel carrier
spacing is 5 kHz. Furthermore, it is here also assumed that uncoded 16-ary QAM is
used in each subchannel (assumes a very “good” communication link).

For the ADSL downlink above, determine the bit rate in each subchannel, the total bit
rate, and the bandwidth e�ciency.

Solution:
From (2.113) on page 51 the bit rate in each subchannel is 4 · 4000 = 16000 [bps].
The number of subchannels is (from (2.235)) N = (1104 � 138)/5 � 1 = 192. So,
Rb = 192 · 16000 = 3.072 [Mbps], � = 3072/966 = 3.18 [bps/Hz] (In practice the
information bit rate is lower since coding normally also is used, see Problem 2.32a.) �
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What about filtering away the side-lobes?
I Let us use a spectral rectangular pulse X

srec

(f ) of amplitude A = 1
and width fD to strictly limit the bandwidth

I Similar to the time-limited case we can write

S

fD(f ) = S(f ) ·X

srec

(f )

I Taking the inverse Fourier transform on both sides we get

s

fD(t) = s(t) ⇤ x

srec

(t) = s(t) ⇤ Af0
sin(p f0 t)

p f0 t

I Since x

srec

(t) is unlimited along the time axis, this is the case for
the filtered signal s

fD(t) as well
I The signal x

srec

(t) defines the ideal Nyquist pulse

As a consequence of filtering, the transmitted symbols will
overlap in time domain) inter-symbol-interference (ISI)
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Nyquist Pulse

6.2. Nyquist Condition for ISI-Free Reception 451

found above that as long as the signaling rate is Rs  2W�p then there is a
possibility for ISI-free reception. To be able to achieve the maximum signaling
rate 2W�p, the so-called Nyquist rate, Rnyq

Rs =
1

Ts
= Rnyq = 2W�p (6.38)

the frequency content Xnc(f) in the overall pulse must be rectangular in shape,
see Figure 6.6a and compare also with Example 6.8. The corresponding pulse
xnc(t) is shown in Figure 6.6b. So, ISI-free reception is obtained when signaling
with the Nyquist rate, Rnyq = 2W�p, if

xnc(t) = x0
sin(�Rnyqt)

�Rnyqt
, ��  t  � (6.39)

Xnc(f) =

�
x0/Rnyq , |f |  Rnyq/2
0 , |f | > Rnyq/2

(6.40)

Note that the zero crossings in xnc(t) occur exactly at the correct time-instants
(at integer multiples of Ts). However, due to the slow decay (1/t) of the pulse,
a small error in the sampling time can cause severe ISI, since the expression for
the worst case ISI in (6.22) does not converge in this case.

x    (t)nc

x0

X    (f)nc

x0/Rnyq

R nyq/2R nyq/2

nyqR
1

nyqR
1 = -T s nyqR

1 = Ts

b)

tf [Hz]

a)

Figure 6.6: a) Ideal Nyquist spectrum; b) Ideal Nyquist pulse.

With ideal Nyquist signaling the bandwidth e�ciency is,

�nyq = Rb
W�p

= Rnyq log2(M)
Rnyq/2 = 2 log2(M) = 2k

�
b/s
Hz

�
(6.41)

and this is an important result, often used as a reference value. If the signal-
ing rate is reduced somewhat below the Nyquist rate, hence if the bandwidth
e�ciency is decreased, then pulses xnc(t) exist that yield ISI-free reception, and
which are very attractive from a practical point of view. A pulse shape that is
frequently used in practice is the spectral raised cosine pulse shape below,
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With ideal Nyquist signaling the bandwidth e�ciency is,

�nyq = Rb
W�p

= Rnyq log2(M)
Rnyq/2 = 2 log2(M) = 2k

�
b/s
Hz

�
(6.41)

and this is an important result, often used as a reference value. If the signal-
ing rate is reduced somewhat below the Nyquist rate, hence if the bandwidth
e�ciency is decreased, then pulses xnc(t) exist that yield ISI-free reception, and
which are very attractive from a practical point of view. A pulse shape that is
frequently used in practice is the spectral raised cosine pulse shape below,

The Nyquist pulse and the effect of ISI will be studied in Chapter 6
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How can we further improve r?

5.5. Problems 421

Then (5.135) can be formulated as,

rk =
Nt�

n=1

�k,ndn + wk , k = 1, 2, . . . , Nr (5.137)

A compact formulation is now obtained as

r =

�

��
r1
...

rNr

�

�� = A

�

��
d1
...

dNt

�

�� +

�

��
w1
...

wNr

�

�� = Ad + w (5.138)

where the Nr �Nt matrix A contains the channel coe�cients {�k,n}. The
relationship in (5.138) is a basic model in so-called multiple-input multiple-
output (MIMO) systems.

The MIMO model is illustrated in the figure below,

MIMO MODEL

d1

dn

dN t

. . .
. . .

αk,n

αk,N t

αk,1

r1

rk

rNr

ML

D
E
C
I
S
I
O
N

R
U
L
E

d =^

. . .

d1
^

dN t
^

. . .
. . .

w1

wk

wNr

rk =
Nt�

n=1

�k,ndn + wk

r =

�

��
r1
...

rNr

�

�� = A

�

��
d1
...

dNt

�

�� +

�

��
w1
...

wNr

�

�� = Ad + w

a) Determine an expression for the bandwidth e�ciency of the system.
Compare with the conventional M-ary QAM case (i.e. Nt = Nr = 1).
Comments?

b) The ML decision rule gives the (vector) decision d̂,

d̂ =

�

��
d̂1
...

d̂Nt

�

��

I MIMO: multiple-input multiple output
I transmission over multiple antennas in the same frequency band
I challenge: the individual wireless channels interfere
I 5G world record 2016: (team from Lund involved)

spectral efficiency of 145.6 bps/Hz with 128 antennas
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Example: discrete frequencies in R(f )
I Assume M = 2
I Let s0(t) = 0 and s1(t) = 5 with a pulse duration T = T

b

/2
I With this the average signal becomes

a(t) =
s0(t)+ s1(t)

2
= 2.5 , 0 t  T

I We can then write (within the pulse duration T)

s0(t) =�2.5+a(t) , s1(t) = +2.5+a(t)

Observe:
1. this method is a waste of signal energy since a(t) does not carry

any information
2. repetition of a(t) in every symbol interval creates some

periodic signal component in the time domain, which leads
to discrete frequencies in the frequency domain
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