LUND
UNIVERSITY

EITG05 - Digital Communications

Week 2, Lecture 1

Bandwidth of Transmitted Signals

```
Michael Lentmaier
Monday, September 4, 2017
```


What did we do last week?

Concepts of M-ary digital signaling:

- Modulation of amplitude, phase or both: PAM, PSK, QAM
- Orthogonal signaling: FSK, OFDM
- Pulse position and width: PPM, PWM

We have paid special attention to:

- Average symbol energy \bar{E}_{s}
- Euclidean distance $D_{i, j}$
- Both values could be related to the energy E_{g} of the pulse $g(t)$

What about the bandwidth of the signal?
How is it related to $g(t)$?

Week 2, Lecture 1

Chapter 2: Model of a Digital Communication System

- 2.5 The bandwidth of the transmitted signal
2.5.1 Basic Fourier transform concepts
2.5.2 $R(f)$: M-ary transmission
2.5.3 $R(f)$: binary signaling
2.5.4 Some definitions of bandwidth

Pages $61-72$ (excluding 2.5.1.2) and $77-88$
Exercises: 2.18, 2.16, 2.17a, 2.19a, Example 2.17 on page 64

Michael Lentmaier, Fall 2017

Bandwidth of Transmitted Signal

- The bandwidth W of a signal is the width of the frequency range where most of the signal energy or power is located

- W is measured on the positive frequency axis
- The bandwidth is a limited and precious resource
- We must have control of the bandwidth and use it efficiently

Questions:

What is the relationship between information bit rate and required bandwidth?
How does the bandwidth depend on the signaling method?

Energy Spectrum

- We have seen last week that the energy of a signal $x(t)$ can be determined as

$$
E_{x}=\int_{-\infty}^{\infty} x^{2}(t) d t
$$

- The function $x^{2}(t)$ shows how the energy E_{x} is distributed along the time axis
- According to Parseval's relation we can alternatively express the energy as

$$
E_{x}=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

where $X(f)$ denotes the Fourier transform of the signal $x(t)$

- The function $|X(f)|^{2}$ shows how the energy E_{x} is distributed in the frequency domain
\Rightarrow We need the Fourier transform as a tool for finding the bandwidth of our signals

Michael Lentmaier, Fall 2017
Digital Communications: Week 2, Lecture

Fourier Transform

- The original signal $x(t)$ can then be expressed in terms of the inverse Fourier transform as

$$
x(t)=\mathcal{F}^{-1}\{X(f)\}=\int_{-\infty}^{\infty} X(f) e^{+j 2 \pi f t} d f=\int_{-\infty}^{\infty}|X(f)| e^{+j(2 \pi f t+\varphi(f))} d f
$$

- Assuming $x(t)$ is a real-valued signal this can be written as

$$
x(t)=2 \int_{0}^{\infty}|X(f)| \cos (2 \pi f t+\varphi(f)) d f
$$

- Interpretation: any signal $x(t)$ can be decomposed into sinusoidal components at different frequencies and phase offsets
- The magnitude $|X(f)|$ measures the strength of the signal component at frequency f

Fourier Transform

- The Fourier transform of a signal $x(t)$ is given by

$$
X(f)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t=X_{R e}(f)+j X_{I m}(f),
$$

where $j=\sqrt{-1}$, i.e., the solution to $j^{2}=-1$

- We can also express $X(f)$ in terms of magnitude $|X(f)|$ and phase $\varphi(f)=\arg X(f)$ (argument)
- Then

$$
X(f)=|X(f)| e^{j \varphi(f)}
$$

$$
\begin{aligned}
|X(f)| & =\sqrt{X_{R e}^{2}(f)+X_{I m}^{2}(f)} \\
X_{R e}(f) & =|X(f)| \cos (\varphi(f)) \\
X_{I m}(f) & =|X(f)| \sin (\varphi(f))
\end{aligned}
$$

- Assuming $x(t)$ is a real-valued signal, it can be shown that

$$
|X(f)|=|X(-f)|,(\text { even }) \quad \varphi(f)=-\varphi(-f),(\text { odd })
$$

Michael Lentmaier, Fall 2017
Digital Communications: Week 2, Lecture

Example: rectangular pulse

- Let us compute the Fourier transform of the following signal:

$$
x_{\text {rec }}(t)= \begin{cases}A & -\frac{T}{2} \leq t \leq \frac{T}{2} \\ 0 & \text { otherwise }\end{cases}
$$

- We get

$$
\begin{aligned}
X_{r e c}(f) & =\mathcal{F}\left\{x_{r e c}(t)\right\}=\int_{-\infty}^{\infty} x_{r e c}(t) e^{-j 2 \pi f t} d t \\
& =\int_{-T / 2}^{+T / 2} A e^{-j 2 \pi f t} d t=\left[-\frac{A e^{-j 2 \pi f t}}{j 2 \pi f}\right]_{-T / 2}^{+T / 2} \\
& =\frac{A}{\pi f} \frac{e^{j \pi f T}-e^{-j \pi f T}}{2 j}=A T \frac{\sin (\pi f T)}{\pi f T}
\end{aligned}
$$

- We have found that

$$
x_{\text {rec }}(t) \longleftrightarrow A T \frac{\sin (\pi f T)}{\pi f T}=A T \operatorname{sinc}(f T)
$$

Notation: $x(t) \longleftrightarrow \mathcal{F}\{x(t)\}$

Example 2.17: sketch of $X_{\text {rec }}(f)$

- the Fourier transform $X(f)$ is centered around $f=0$: baseband
- we observe a main-lobe and several side-lobes
- Note: $f T=2$ means that $f=2 \cdot 1 / T$

Sketch the function for $T=10^{-6} s$ and $T=2 \cdot 10^{-6} s$

Fourier transform of time-shifted signals

- Did you notice the difference between $x_{\text {rec }}(t)$ in this example and the elementrary pulse $g_{\text {rec }}(t)$ which we used last week?

$$
x_{\text {rec }}(t)=\left\{\begin{array}{ll}
A & -\frac{T}{2} \leq t \leq \frac{T}{2} \\
0 & \text { otherwise }
\end{array}, \quad g_{\text {rec }}(t)= \begin{cases}A & 0 \leq t \leq T \\
0 & \text { otherwise }\end{cases}\right.
$$

- The pulse $g_{\text {rec }}(t)=x_{\text {rec }}(t-T / 2)$ is a time-shifted version of $x_{\text {rec }}(t)$
- In general, the Fourier transform of a signal $y(t)=x\left(t-t_{d}\right)$ with a constant delay t_{d} becomes

$$
Y(f)=\int_{-\infty}^{\infty} x\left(t-t_{d}\right) e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} x(\tau) e^{-j 2 \pi f\left(\tau+t_{d}\right)} d \tau=X(f) e^{-j 2 \pi f t_{d}}
$$

- Observe: the delay t_{d} changes only the phase of $Y(f)$
- The energy spectrum is not affected by time-shifts

$$
\left|X_{\text {rec }}(f)\right|^{2}=\left|G_{\text {rec }}(f)\right|^{2} \quad \text { (compare App. D.1) }
$$

Example 2.17: sketch of $\left|X_{\text {rec }}(f)\right|^{2}$

- Consider now the normalized energy spectrum in dB

\Rightarrow most energy is contained in the main-lobe (90.3%)
\qquad

A simple Matlab exercise

Let us plot the spectrum of the pulse $g_{\text {rec }}(t)$

A simple Matlab exercise

And this is how it was done

```
% Example: rect pulse spectrum
x=-6:0.01:6;
l}\begin{array}{l}{x=-6:0.01:6;}\\{G=sin(pi.*x)./(pi.*x).*exp(-j*pi*x); % T=1}
figure(2)
subplot(3,1,1);
plot(x,real(G),'r',x,imag(G),'g'); xlabel('fT');
grid on;
subplot (3,1,2);
plot(x,abs(G).^2); xlabel('fT');
grid on;
subplot(3,1,3);
plot(x,10.*log10(abs(G).^2)); xlabel('fT');
set(gca,'YLim', [-30 0])
grid on;
```


$G_{\text {hcs }}(f)=\mathcal{F}\left\{g_{\text {hcs }}(t)\right\}=\frac{2 A T}{\pi} \frac{\cos (\pi f T)}{1-(2 f T)^{2}} e^{-j \pi f T}$ $G_{\text {hcs }}(f= \pm 1 / 2 T)=\mp j A T / 2$

$$
G_{\text {hcs }}(n / T)=0 \text { if } n= \pm 3 / 2, \pm 5 / 2, \pm 7 / 2 . .
$$

Frequency shift operations

- We have seen the effect of a time shift on the Fourier transform

$$
g\left(t-t_{d}\right) \longleftrightarrow G(f) e^{-j 2 \pi f t_{d}}
$$

- In a similar way we can characterize a frequency shift f_{c} by

$$
g(t) e^{j 2 \pi f_{c} t} \longleftrightarrow G\left(f-f_{c}\right)
$$

- Let us make use of the relation $e^{j 2 \pi f_{c} t}=\cos \left(2 \pi f_{c} t\right)+j \sin \left(2 \pi f_{c} t\right)$
- We can now express this in terms of cosine and sine functions,

$$
\begin{aligned}
& g(t) \cos \left(2 \pi f_{c} t\right) \longleftrightarrow \frac{G\left(f+f_{c}\right)+G\left(f-f_{c}\right)}{2} \\
& g(t) \sin \left(2 \pi f_{c} t\right) \longleftrightarrow j \frac{G\left(f+f_{c}\right)-G\left(f-f_{c}\right)}{2}
\end{aligned}
$$

\Rightarrow by simply changing the carrier frequency f_{c} we can move our signals to a suitable location along the frequency axis

Fourier transform of other pulses

- The Fourier transforms $G(f)$ and sketches of the energy spectra $|G(f)|^{2}$ are given for a number of different elementrary pulses $g(t)$ in Appendix D
- Example: half cycle sinusoidal pulse

$$
\begin{aligned}
& g_{h c s}(t)= \begin{cases}A \sin (\pi t / T) & 0 \leq t \leq T \\
0, & \text { otherwise }\end{cases} \\
& E_{g}=A^{2} T / 2
\end{aligned}
$$

Figure D.7: $g_{h c s}(t) / A$

Example: time raised cosine pulse

$$
x(t)=g(t) \cdot \cos \left(2 \pi f_{c} t\right)=g_{r c}(t+T / 2) \cdot \cos \left(2 \pi f_{c} t\right), \quad f_{c}=20 / T
$$

Back to the transmitted signal

- We have seen how the Fourier transform can be used to calculate the energy spectrum $|X(f)|^{2}$ of a given signal $x(t)$
- Let us now look at the transmitted signal for M-ary modulation

$$
s(t)=s_{m[0]}(t)+s_{m[1]}\left(t-T_{s}\right)+s_{m[2]}\left(t-2 T_{s}\right)+\cdots=\sum_{i=0}^{\infty} s_{m[i]}\left(t-i T_{s}\right)
$$

- Message $m[i]$ selects the signal alternative to be sent at time $i T_{s}$
- Since the information bit stream is random, the transmitted signal $s(t)$ consists of a sequence of random signal alternatives

How can we determine the bandwidth W of the transmitted signal?

Power Spectral Density

- The random M-ary sequence of messages $m[i]$ consists of independent, identically distributed (i.i.d) M-ary symbols
- The probability for each of the $M=2^{k}$ symbols (messages) is denoted by $P_{\ell}, \ell=0,1, \ldots, M-1$
- All signal alternatives $s_{\ell}(t)$ in the constellation have finite energy
- The average signal over all signal alternatives is denoted $a(t)$, i.e.,

$$
a(t)=\sum_{\ell=0}^{M-1} P_{\ell} s_{\ell}(t)
$$

and its Fourier transform is

$$
A(f)=\sum_{n=0}^{M-1} P_{n} S_{n}(f)
$$

Remark:

Source coding (compression) can be used to remove or reduce correlations in the information stream

Power Spectral Density

- Since the signal has no predefined length the energy is not a good measure (could be infinite according to our model)
- On the other hand, we know that the signal has finite power
- The power spectral density $R(f)$ shows how the average signal power \bar{P} is distributed along the frequency axis on average

$$
\bar{P}=\bar{E}_{b} R_{b}=\int_{-\infty}^{\infty} R(f) d f
$$

- Most of the average signal power $\bar{P}\left[\mathrm{~V}^{2}\right]$ will be contained within the main-lobe of $R(f)\left[\mathrm{V}^{2} / \mathrm{Hz}\right]$
\Rightarrow we can determine the signal bandwidth from $R(f)$
Our aim is to find $R(f)$ for a given modulation order M and set of M signal alternatives (constellation)

$R(f)$: Main Result

- The power spectral density $R(f)$ can be divided into a continuous part $R_{c}(f)$ and a discrete part $R_{d}(f)$

$$
R(f)=R_{c}(f)+R_{d}(f)
$$

- The general expression for the continuous part is

$$
\begin{aligned}
R_{c}(f) & =\frac{1}{T_{s}} \sum_{n=0}^{M-1} P_{n}\left|S_{n}(f)-A(f)\right|^{2} \\
& =\left(\frac{1}{T_{S}} \sum_{n=0}^{M-1} P_{n}\left|S_{n}(f)\right|^{2}\right)-\frac{|A(f)|^{2}}{T_{s}}
\end{aligned}
$$

- For the discrete part we have

$$
R_{d}(f)=\frac{|A(f)|^{2}}{T_{s}^{2}} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{s}\right)
$$

$R(f)$: Main Result

- Assume now that the average signal $a(t)=0$ for all t
- It follows that $A(f)=0$ for all f
- This simplifies the result to

$$
R(f)=R_{c}(f)=R_{s} \sum_{n=0}^{M-1} P_{n}\left|S_{n}(f)\right|^{2}=R_{s} E\left\{\left|S_{m[n]}(f)\right|^{2}\right\}
$$

- These general results can also be used to study the consequences that technical errors or impairments in the transmitter can have on the frequency spectrum
- We will now consider various special cases used in practice

Example 2.21

Assume equally likely antipodal signal alternatives, such that

$$
s_{1}(t)=-s_{0}(t)=g(t)
$$

where $g(t)=g_{\text {rec }}(t)$, and $g_{\text {rec }}(t)$ is given in (D.1). Assume also that $T \leq T_{b}$.
i) Calculate the power spectral density $R(f)$.
ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe of $\boldsymbol{R}(\boldsymbol{f})$, if the information bit rate is $10[\mathrm{kbps}]$, and if $T=T_{b} / 2$. Calculate also the bandwidth efficiency ρ.
iii) Estimate the attenuation in dB of the first sidelobe of $R(f)$ compared to $R(0)$.

- $M=2$ with equally likely antipodal signaling $s_{1}(t)=-s_{0}(t)=g(t)$
- With $P_{0}=P_{1}=1 / 2$ and $S_{1}(f)=-S_{0}(f)=G(f)$ we get

$$
R(f)=R_{b}\left|S_{1}(f)\right|^{2}=R_{b}\left|S_{0}(f)\right|^{2}=R_{b}|G(f)|^{2}
$$

- Details for the pulse in Appendix D

$R(f)$: Binary Signaling

- In the general binary case, i.e., $M=2$, we have

$$
A(f)=P_{0} S_{0}(f)+P_{1} S_{1}(f)
$$

- This simplifies the expression for the power spectral density to

$$
\begin{array}{rlrl}
R(f) & =R_{c}(f) & & +R_{d}(f) \\
& =\frac{P_{0} P_{1}}{T_{b}}\left|S_{0}(f)-S_{1}(f)\right|^{2} & +\frac{\left|P_{0} S_{0}(f)+P_{1} S_{1}(f)\right|^{2}}{T_{b}^{2}} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{b}\right)
\end{array}
$$

(derivation in Ex. 2.20)

- We will now consider some examples from the compendium

Example 2.23

Assume equally likely antipodal signal alternatives below. Assume that $s_{1}(t)=-s_{0}(t)=$ $g_{r c}(t)$, where the time raised cosine pulse $g_{r c}(t)$ is defined in (D.18). Assume also that $T=T_{b}$.
Find an expression for the power spectral density $R(f)$. Calculate the bandwidth W, defined as the one-sided width of the mainlobe of $R(f)$, if R_{b} is $10[\mathrm{kbps}]$. Calculate also the bandwidth efficiency ρ.

- Same as Example 2.21, but with $g_{r c}(t)$ pulse
- Analogously we get

$$
R(f)=R_{b}\left|G_{r c}(f)\right|^{2}
$$

- From the one-sided main-lobe we get

$$
W=2 / T[\mathrm{~Hz}]
$$

- Bandwidth efficiency $\rho=1 / 2[\mathrm{bps} / \mathrm{Hz}]$ is the same (why?)

Example 2.24

Assume $P_{0}=P_{1}$ and that,

$$
s_{1}(t)=-s_{0}(t)=g_{r c}(t) \cos \left(2 \pi f_{c} t\right)
$$

with $T=T_{b}$, and $f_{c} \gg 1 / T$. Hence, a version of binary PSK signaling is considered here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, defined as the double-sided width of the mainlobe around the carrier frequency $\boldsymbol{f}_{\boldsymbol{c}}$. Assume that the information bit rate is $10[\mathrm{kbps}]$. Calculate also the bandwidth

- This corresponds to the bandpass case
- Let $g_{h f}(t)$ denote the high-frequency pulse

$$
g_{h f}(t)=g_{r c}(t) \cos \left(2 \pi f_{c} t\right) \quad \text { and } \quad R(f)=R_{b}\left|G_{h f}(f)\right|^{2}
$$

- Using shift operations we get

$$
R(f)=R_{b}\left|\frac{G_{r c}\left(f+f_{c}\right)}{2}+\frac{G_{r c}\left(f-f_{c}\right)}{2}\right|^{2}
$$

- From the two-sided main-lobe we get

$$
W=4 / T[\mathrm{~Hz}]
$$

Digital Communications: Week 2, Lecture

