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What did we do last week?

Concepts of M-ary digital signaling:
I Modulation of amplitude, phase or both: PAM, PSK, QAM
I Orthogonal signaling: FSK, OFDM
I Pulse position and width: PPM, PWM

We have paid special attention to:
I Average symbol energy E

s

I Euclidean distance D

i,j

I Both values could be related to the energy E

g

of the pulse g(t)

What about the bandwidth of the signal?

How is it related to g(t)?
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Bandwidth of Transmitted Signal
I The bandwidth W of a signal is the width of the frequency range

where most of the signal energy or power is located

S(f)

f
fc

W

I
W is measured on the positive frequency axis

I The bandwidth is a limited and precious resource
I We must have control of the bandwidth and use it efficiently

Questions:
What is the relationship between information bit rate
and required bandwidth?
How does the bandwidth depend on the signaling method?
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Energy Spectrum
I We have seen last week that the energy of a signal x(t) can be

determined as
E

x

=
Z •

�•
x

2(t) dt

I The function x

2(t) shows how the energy E

x

is distributed along
the time axis

I According to Parseval’s relation we can alternatively express the
energy as

E

x

=
Z •

�•
|X(f )|2 df ,

where X(f ) denotes the Fourier transform of the signal x(t)

I The function |X(f )|2 shows how the energy E

x

is distributed in the
frequency domain

)We need the Fourier transform as a tool for finding the
bandwidth of our signals
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Fourier Transform
I The Fourier transform of a signal x(t) is given by

X(f ) = F{x(t)} =
Z •

�•
x(t) e

�j2p f t

dt = X

Re

(f )+ j X

Im

(f ) ,

where j =
p
�1, i.e., the solution to j

2 =�1
I We can also express X(f ) in terms of magnitude |X(f )| and

phase j(f ) = arg X(f ) (argument)

X(f ) = |X(f )| e

jj(f )

I Then
|X(f )| =

q
X

2
Re

(f )+X

2
Im

(f )

X

Re

(f ) = |X(f )| cos(j(f ))

X

Im

(f ) = |X(f )| sin(j(f ))

I Assuming x(t) is a real-valued signal, it can be shown that

|X(f )| = |X(�f )| , (even) j(f ) =�j(�f ) , (odd)
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Fourier Transform
I The original signal x(t) can then be expressed in terms of the

inverse Fourier transform as

x(t) = F�1{X(f )} =
Z •

�•
X(f ) e

+j2p f t

df =
Z •

�•
|X(f )| e

+j(2p f t+j(f ))
df

I Assuming x(t) is a real-valued signal this can be written as

x(t) = 2
Z •

0
|X(f )| cos(2p f t +j(f )) df

I Interpretation: any signal x(t) can be decomposed into
sinusoidal components at different frequencies and phase offsets

I The magnitude |X(f )| measures the strength of the signal
component at frequency f
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Example: rectangular pulse
I Let us compute the Fourier transform of the following signal:

x

rec

(t) =

(
A �T

2  t  T

2
0 otherwise

I We get

X

rec

(f ) = F{x

rec

(t)} =
Z •

�•
x

rec

(t) e

�j2p f t

dt

=
Z +T/2

�T/2
A e

�j2p f t

dt =


�Ae

�j2p f t

j2p f

�+T/2

�T/2

=
A

p f

e

jp f T � e

�jp f T

2j

= AT

sin(p f T)

p f T

I We have found that

x

rec

(t) ! AT

sin(p f T)

p f T

= AT sinc(fT)

Notation: x(t) ! F{x(t)}
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Example 2.17: sketch of X

rec

(f )
2.5. The Bandwidth of the Transmitted Signal 65
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b) The energy spectrum |Xrec(f)|2 is,

|Xrec(f)|2 = A2T 2 sin(�fT )
�fT

2

= ExT
sin(�fT )

�fT

2

since the signal energy Ex equals,

Ex =
�

��
|Xrec(f)|2df =

T/2

�T/2

x2
rec(t)dt = A2T

Hence,

10 log10(|Xrec(f)|2/ExT ) = 10 log10

sin(�fT )
�fT

2

and this function is plotted above (right figure). It is seen in this figure that a
significant part of the signal energy Ex is located within the double-sided mainlobe
(�1/T � f � 1/T ) of the energy spectrum |Xrec(f)|2. Actually, from numerical
calculations we know that 90.3% of the total energy Ex is contained within the
double-sided mainlobe,

1/T

�1/T

|Xrec(f)|2df � 0.903
�

��
|Xrec(f)|2df = 0.903 Ex

�

In Example 2.17 above it is seen that the one-sided mainlobe has the width
1/T [Hz] for a rectangular pulse of duration T . Observe that the width of
the mainlobe decreases with increasing pulse duration T . The width
of the one-sided mainlobe is often (but not always) used as a measure of the
bandwidth of a baseband (low-pass) signal. See also Table 2.1 on page 86, and
Appendix D, for corresponding results for other pulse shapes.

Furthermore, from Example 2.17, it is seen that the other lobes, the so-called
sidelobes, decay with increasing frequency. The asymptotic rate of decay of
the sidelobes is another important parameter (in the frequency domain), and in
Example 2.17 this rate equals f�2 for the energy spectrum |Xrec(f)|2.

I the Fourier transform X(f ) is centered around f = 0: baseband
I we observe a main-lobe and several side-lobes
I Note: fT = 2 means that f = 2 ·1/T

Sketch the function for T = 10�6
s and T = 2 ·10�6

s
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Example 2.17: sketch of |X
rec

(f )|2
I Consider now the normalized energy spectrum in dB

10log10

✓
|X

rec

(f )|2

E

x

T

◆
= 10log10

✓
sin(p f T)

p f T

◆2
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since the signal energy Ex equals,

Ex =
�

��
|Xrec(f)|2df =

T/2
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x2
rec(t)dt = A2T

Hence,

10 log10(|Xrec(f)|2/ExT ) = 10 log10

sin(�fT )
�fT

2

and this function is plotted above (right figure). It is seen in this figure that a
significant part of the signal energy Ex is located within the double-sided mainlobe
(�1/T � f � 1/T ) of the energy spectrum |Xrec(f)|2. Actually, from numerical
calculations we know that 90.3% of the total energy Ex is contained within the
double-sided mainlobe,

1/T

�1/T

|Xrec(f)|2df � 0.903
�

��
|Xrec(f)|2df = 0.903 Ex

�

In Example 2.17 above it is seen that the one-sided mainlobe has the width
1/T [Hz] for a rectangular pulse of duration T . Observe that the width of
the mainlobe decreases with increasing pulse duration T . The width
of the one-sided mainlobe is often (but not always) used as a measure of the
bandwidth of a baseband (low-pass) signal. See also Table 2.1 on page 86, and
Appendix D, for corresponding results for other pulse shapes.

Furthermore, from Example 2.17, it is seen that the other lobes, the so-called
sidelobes, decay with increasing frequency. The asymptotic rate of decay of
the sidelobes is another important parameter (in the frequency domain), and in
Example 2.17 this rate equals f�2 for the energy spectrum |Xrec(f)|2.

) most energy is contained in the main-lobe (90.3 %)
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Fourier transform of time-shifted signals
I Did you notice the difference between x

rec

(t) in this example and
the elementrary pulse g

rec

(t) which we used last week?

x

rec

(t) =

(
A �T

2  t  T

2
0 otherwise

, g

rec

(t) =

(
A 0 t  T

0 otherwise

I The pulse g

rec

(t) = x

rec

(t�T/2) is a time-shifted version of x

rec

(t)

I In general, the Fourier transform of a signal y(t) = x(t� t

d

) with a
constant delay t

d

becomes

Y(f ) =
Z •

�•
x(t�t

d

) e

�j2p f t

dt =
Z •

�•
x(t) e

�j2p f (t+t

d

)
dt = X(f ) e

�j2p f t

d

I Observe: the delay t

d

changes only the phase of Y(f )

I The energy spectrum is not affected by time-shifts

|X
rec

(f )|2 = |G
rec

(f )|2 (compare App. D.1)
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A simple Matlab exercise
Let us plot the spectrum of the pulse g

rec

(t)
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A simple Matlab exercise
And this is how it was done:
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Fourier transform of other pulses
I The Fourier transforms G(f ) and sketches of the energy spectra

|G(f )|2 are given for a number of different elementrary pulses g(t)
in Appendix D

I Example: half cycle sinusoidal pulse 619
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4. The half cycle sinusoidal pulse:

ghcs(t) =

�
A sin(�t/T ) , 0  t  T
0 , otherwise

(D.13)

Eg = A2T/2 (D.14)

The Fourier transform of ghcs(t) is denoted Ghcs(f),

Ghcs(f) = F{ghcs(t)} =
2AT

�

cos(�fT )

1 � (2fT )2
e�j�fT (D.15)

Ghcs(f = ±1/2T ) = �jAT/2 (D.16)

Observe that Ghcs(n/T ) = 0 if n = ±3/2, ±5/2, ±7/2, . . .

|Ghcs(f)|2 =
4A2T 2

�2

✓
cos(�fT )

1 � (2fT )2

◆2

(D.17)

Figure D.7 shows ghcs(t)/A versus t. Note the labeling on the time axis: 0.6, 0.8
and 1 means that t = 0.6T , t = 0.8T and t = T , respectively.
Figure D.8 shows 10 log10(|Ghcs(f)|2/EgT ) versus f . Note the labeling on the
frequency axis: ±2, ±4, etc. means the frequencies f = ±2/T , f = ±4/T , etc.
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Frequency shift operations
I We have seen the effect of a time shift on the Fourier transform

g(t� t

d

)  ! G(f ) e

�j2p f t

d

I In a similar way we can characterize a frequency shift f

c

by

g(t) e

j2p f

c

t  ! G(f � f

c

)

I Let us make use of the relation e

j2p f

c

t = cos(2p f

c

t)+ j sin(2p f

c

t)

I We can now express this in terms of cosine and sine functions,

g(t) cos(2p f

c

t)  ! G(f + f

c

)+G(f � f

c

)

2

g(t) sin(2p f

c

t)  ! j

G(f + f

c

)�G(f � f

c

)

2
) by simply changing the carrier frequency f

c

we can move
our signals to a suitable location along the frequency axis
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Example: time raised cosine pulse

2.5. The Bandwidth of the Transmitted Signal 69
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rc

(t +T/2) · cos(2p f

c

t) , f

c

= 20/T
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Back to the transmitted signal

I We have seen how the Fourier transform can be used to
calculate the energy spectrum |X(f )|2 of a given signal x(t)

I Let us now look at the transmitted signal for M-ary modulation

s(t) = s

m[0](t)+ s

m[1](t�T

s

)+ s

m[2](t�2T

s

)+ · · · =
•

Â
i=0

s

m[i](t� iT

s

)

I Message m[i] selects the signal alternative to be sent at time iT

s

I Since the information bit stream is random, the transmitted signal
s(t) consists of a sequence of random signal alternatives

How can we determine the bandwidth W of the transmitted signal?
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Power Spectral Density
I Since the signal has no predefined length the energy is not a

good measure (could be infinite according to our model)
I On the other hand, we know that the signal has finite power
I The power spectral density R(f ) shows how the average signal

power P is distributed along the frequency axis on average

P = E

b

R

b

=
Z •

�•
R(f ) df

I Most of the average signal power P [V2] will be contained within
the main-lobe of R(f ) [V2/Hz]

) we can determine the signal bandwidth from R(f )

Our aim is to find R(f ) for a given modulation order M and set of M

signal alternatives (constellation)
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Power Spectral Density
I The random M-ary sequence of messages m[i] consists of

independent, identically distributed (i.i.d) M-ary symbols
I The probability for each of the M = 2k symbols (messages) is

denoted by P`,` = 0,1, . . . ,M�1
I All signal alternatives s`(t) in the constellation have finite energy
I The average signal over all signal alternatives is denoted a(t),

i.e.,

a(t) =
M�1

Ầ
=0

P` s`(t)

and its Fourier transform is

A(f ) =
M�1

Â
n=0

P

n

S

n

(f )

Remark:
Source coding (compression) can be used to remove or reduce
correlations in the information stream
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R(f ): Main Result
I The power spectral density R(f ) can be divided into

a continuous part R

c

(f ) and a discrete part R

d

(f )

R(f ) = R

c

(f )+R

d

(f )

I The general expression for the continuous part is

R

c

(f ) =
1
T

s

M�1

Â
n=0

P

n

|S
n

(f )�A(f )|2

=

 
1
T

s

M�1

Â
n=0

P

n

|S
n

(f )|2
!
� |A(f )|2

T

s

I For the discrete part we have

R

d

(f ) =
|A(f )|2

T

2
s

•

Â
n=�•

d (f �n/T

s

)
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R(f ): Main Result
I Assume now that the average signal a(t) = 0 for all t

I It follows that A(f ) = 0 for all f

I This simplifies the result to

R(f ) = R

c

(f ) = R

s

M�1

Â
n=0

P

n

|S
n

(f )|2 = R

s

E{|S
m[n](f )|2}

I These general results can also be used to study the
consequences that technical errors or impairments in the
transmitter can have on the frequency spectrum

I We will now consider various special cases used in practice
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R(f ): Binary Signaling

I In the general binary case, i.e., M = 2, we have

A(f ) = P0 S0(f )+P1 S1(f )

I This simplifies the expression for the power spectral density to

R(f ) = R

c

(f ) + R

d

(f )

=
P0P1

T

b

|S0(f )�S1(f )|2 +
|P0 S0(f )+P1 S1(f )|2

T

2
b

•

Â
n=�•

d (f �n/T

b

)

(derivation in Ex. 2.20)

I We will now consider some examples from the compendium
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Example 2.21

2.5. The Bandwidth of the Transmitted Signal 79

Solution:

M = 2 � Tb = Ts

Rc(f) =
1
Tb

1

n=0

Pn|Sn(f)|2 � |A(f)|2

Tb
=

=
1
Tb

P0|S0(f)|2 + P1|S1(f)|2 � |P0S0(f) + P1S1(f)|2 =

=
1
Tb

P0|S0(f)|2 + P1|S1(f)|2 � P 2
0 |S0(f)|2 � P 2

1 |S1(f)|2�

�P0P1S0(f)S�
1 (f) � P0P1S

�
0 (f)S1(f)] =

=
1
Tb

(P0 � P 2
0 )|S0(f)|2 + (P1 � P 2

1 )|S1(f)|2 � P0P1S0(f)S�
1 (f)�

�P0P1S
�
0 (f)S1(f)]

Since (P0 � P 2
0 ) = (P1 � P 2

1 ) = P0P1 we can write Rc(f) as,

Rc(f) =
P0P1

Tb
|S0(f) � S1(f)|2

Rd(f) is obtained directly,

Rd(f) =
|A(f)|2

T 2
b

�

n=��
�(f � n/Tb) =

|P0S0(f) + P1S1(f)|2

T 2
b

�

n=��
�(f � n/Tb)

Combining Rc(f) and Rd(f) above yields (2.206) �

EXAMPLE 2.21
Assume equally likely antipodal signal alternatives, such that

s1(t) = �s0(t) = g(t)

where g(t) = grec(t), and grec(t) is given in (D.1). Assume also that T � Tb.

i) Calculate the power spectral density R(f).

ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe
of R(f), if the information bit rate is 10 [kbps], and if T = Tb/2.

Calculate also the bandwidth e�ciency �.

iii) Estimate the attenuation in dB of the first sidelobe of R(f) compared to R(0).

Solution:
From (2.206) we obtain for equally likely antipodal signals that (P0 = P1 = 1/2, S1(f) =
�S0(f) = G(f)),

R(f) = Rb|S1(f)|2 = Rb|S0(f)|2 = Rb|G(f)|2

I
M = 2 with equally likely antipodal signaling s1(t) =�s0(t) = g(t)

I With P0 = P1 = 1/2 and S1(f ) =�S0(f ) = G(f ) we get

R(f ) = R

b

|S1(f )|2 = R

b

|S0(f )|2 = R

b

|G(f )|2

I Details for the pulse in Appendix D
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Example 2.23

2.5. The Bandwidth of the Transmitted Signal 81

Solution:
From (2.206) we obtain,

R(f) = Rb|S1(f)|2/4
Rc(f)

+
|S1(f)|2

4T 2
b

�

n=��
�(f � nRb)

Rd(f)

=

= Rb|Grec(f)|2/4 +
|Grec(f)|2

4T 2
b

�

n=��
�(f � nRb) =

=
RbA

2T 2

4
sin(�fT )

�fT

2

+
A2T 2

4T 2
b

sin(�fT )
�fT

2 �

n=��

�(f � nRb)

T=Tb

�
=

=
A2

4Rb

sin(�fTb)
�fTb

2

Rc(f)

+
A2

4
�(f)

Rd(f)

Above we have used that sin(�fTb) = 0 if f = nRb, n = ±1, ±2, . . ..

Comment:
We know that the average signal power here is,

P̄ = ĒbRb =
E1

2
Rb =

A2Tb

2
Rb = A2/2

We also know from (2.168) that,

P̄ =
�

��
R(f)df =

�

��

Rb

4
A2T 2

b
sin(�fTb)

�fTb

2

+
A2

4
�(f) df =

=
Rb

4
· A2Tb +

A2

4
= A2/2

where Parseval’s relation (2.150) was used to solve the first part of the integral above.
Hence, only half (= A2/4) of the total signal power is obtained from Rc(f) and carries
information. The other half (= A2/4) of the signal power is a DC component (at f = 0
in Rd(f)). �

EXAMPLE 2.23
Assume equally likely antipodal signal alternatives below. Assume that s1(t) = �s0(t) =
grc(t), where the time raised cosine pulse grc(t) is defined in (D.18). Assume also that
T = Tb.

Find an expression for the power spectral density R(f). Calculate the bandwidth W ,
defined as the one-sided width of the mainlobe of R(f), if Rb is 10 [kbps]. Calculate
also the bandwidth e�ciency �.

I Same as Example 2.21, but with g

rc

(t) pulse
I Analogously we get

R(f ) = R

b

|G
rc

(f )|2

I From the one-sided main-lobe we get

W = 2/T [Hz]

I Bandwidth efficiency r = 1/2 [bps/Hz] is the same (why?)
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Example 2.24

82 Chapter 2. Model of a Digital Communication System

Solution:
In the same way as in Example 2.21 we obtain from (2.206) that,

R(f) = Rb|Grc(f)|2 = RbEgT · |Grc(f)|2

EgT

F igure D.10

From (D.22), or from Figure D.10 we find that the one-sided width of the mainlobe is,

W = 2/T [Hz]

Hence, W = 2/T = 2/Tb = 2 · 104 = 20 [kHz].

The bandwidth e�cieny � equals,

� =
Rb

W
=

Rb

2Rb
= 1/2 [bps/Hz]

From Figure D.10 we also see that the attenuation of the first sidelobe in R(f) is
approximately 30 dB compared to R(0). �

EXAMPLE 2.24
Assume P0 = P1 and that,

s1(t) = �s0(t) = grc(t) cos(2�fct)

with T = Tb, and fc � 1/T . Hence, a version of binary PSK signaling is considered
here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, de-
fined as the double-sided width of the mainlobe around the carrier frequency
fc. Assume that the information bit rate is 10 [kbps]. Calculate also the bandwidth
e�ciency �. (A time-shifted version of s1(t) is shown in Figure 2.16 on page 69). For
simplicity and without a�ecting the results, we may here assume that fc is an integer
multiple of the symbol rate Rs. However, this is not a requirement in general, and this
is discussed in more detail in Subsection 3.2.1.

Solution:
We may here consider the high-frequency pulse ghf (t),

ghf (t) = grc(t) cos(2�fct)

Then s1(t) = �s0(t) = ghf (t), and

R(f) = Rb|Ghf (f)|2

So, the problem is to find the Fouriertransform Ghf (f) = F{ghf (t)}. This is treated in
Subsection 2.5.1.1 (frequency shift operations), see especially (2.157) and also compare
with Figures 2.17–2.18 on page 69. From (2.157) we obtain,

R(f) = Rb
Grc(f + fc)

2
+

Grc(f � fc)
2

2

and the bandwidth W around the carrier frequency fc is in this bandpass case
therefore twice as large as in Example 2.23 (the low-pass case),

W = 4/T [Hz]

I This corresponds to the bandpass case
I Let g

hf

(t) denote the high-frequency pulse

g

hf

(t) = g

rc

(t)cos(2p f

c

t) and R(f ) = R

b

|G
hf

(f )|2

I Using shift operations we get

R(f ) = R

b

����
G

rc

(f + f

c

)

2
+

G

rc

(f � f

c

)

2

����
2

I From the two-sided main-lobe we get

W = 4/T [Hz]
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