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What did we do last week? Bandwidth of Transmitted Signal
Concepts of M-ary digital signaling: » The bandwidth W of a signal is the width of the frequency range
) i where most of the signal energy or power is located
» Modulation of amplitude, phase or both: PAM, PSK, QAM

w

» Orthogonal signaling: FSK, OFDM 5
» Pulse position and width: PPM, PWM

We have paid special attention to: | f. s
» Average symbol energy E; ‘
» Euclidean distance D;; » W is measured on the positive frequency axis
> Both values could be related to the energy E, of the pulse g(1) > The bandwidth is a limited and precious resource
» We must have control of the bandwidth and use it efficiently
What about the bandwidth of the signal? Questions:
How is it related to g(f)? What is the relationship between information bit rate

and required bandwidth?
How does the bandwidth depend on the signaling method?
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Energy Spectrum Fourier Transform

» We have seen last week that the energy of a signal x(r) can be > The Fourier transform of a signal x(r) is given by

determined as . o ponfi )

B[R0 X() = FAx() = [ x() e de =X )+ Xin(F)

» The function x2(¢) shows how the energy E, is distributed along where j = V/~1, i.e., the solution to /> = —1

the time axis » We can also express X(f) in terms of magnitude |X(f)| and
» According to Parseval’s relation we can alternatively express the phase ¢(f) = arg X(f) (argument)

energy as _ X(f) = |X(f)| &0

E, = /_o‘3 |X(f)|2 df ; » Then
X (f) Xz (f) + X7, (f)

where X(f) denotes the Fourier transform of the signal x(r)

» The function |X(f)|* shows how the energy E, is distributed in the
frequency domain Xim(f

|=
Xre(f) = [X(F)| cos((f))
) = IX(F)] sin(e(f))

» Assuming x(¢) is a real-valued signal, it can be shown that

IX()I = 1X(=A)I, (even) o(f) =—o(=f) , (odd)

= We need the Fourier transform as a tool for finding the
bandwidth of our signals
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Fourier Transform Example: rectangular pulse
» The original signal x(r) can then be expressed in terms of the » Let us compute the Fourier transform of the following signal:
inverse Fourier transform as A T<oi<T
> ° Hreelt) = 0 otkzle;wi;e2
() — / X(F) 2R gf — / X(F)| eHC@Af1+0()
x(0)=F XY= | X() e PP df = [ IX(f)]e df . W get
» Assuming x(t) is a real-valued signal this can be written as Xree () = F{xree(t)} = /m Xrec(t) €T
() =2 / T IX()| cosnfi+ o(f)) df _ [T g, [_Aeﬂ”f ’]”/ ’
0 _1)2 2rf 1 rp
» Interpretation: any signal x(¢) can be decomposed into A 7T _ o=infT sin(7f T)
sinusoidal components at different frequencies and phase offsets = T 2 =AT AT
» The magnitude |X(f)| measures the strength of the signal
component at frequency f » We have found that
Yoee(f) — AT Smgfif;n — ATsinc(fT)

Notation: x(¢) «— F{x(¢)}
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Example 2.17: sketch of X,..(f) Example 2.17: sketch of |X,..(f)|?

» Consider now the normalized energy spectrum in dB

|Xrec (f)|2 _ Sln(ﬂfT) 2
@ 1010g10 (m = 1010g10 W
= 5 - 2 /T4 6
=
b
ey \/é h %
T
0.2
» the Fourier transform X(f) is centered around f = 0: baseband
» we observe a main-lobe and several side-lobes /\ /\
_30 |

» Note: fT =2 means thatf=2-1/T

Sketch the function for 7=10"°sand T =2-10"%s = most energy is contained in the main-lobe (90.3 %)
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Fourier transform of time-shifted signals A simple Matlab exercise

» Did you notice the difference between x,..(¢) in this example and Let us plot the spectrum of the pulse ge.(7)

' ?
the elementrary pulse g,..(r) which we used last week? Re{Grec(f)} Im{Gee( )}

1 T T
T oy<I <r<
xrec(t) - A z = t._ 2 5 grec(t) - A0 _t_.T 0
0 otherwise 0 otherwise
» The pulse grec(t) = xrec(t — T/2) is a time-shifted version of x,..(z) e "“G (f)iz h 2 ¢ 6
> In general, the Fourier transform of a signal y(r) = x(r —t,;) with a 1 e
constant delay r; becomes osl
I N e 1L I —j2nf (T+tg) go —joxf ‘ ‘ ‘
V()= [ xte—t) e P di= [ x(x) e P qr—x(p) e Pl Y /A U
o 10log;, |GT60(f)‘2 fT
» Observe: the delay 7, changes only the phase of Y(f) ‘ ‘ ‘ ‘
a0l ,
» The energy spectrum is not affected by time-shifts
v e NAVaVavATA B ATaVa V0N
[Xrec(f)|” = |Grec(f)|~ (compare App. D.1) e 4 2 0 2 4 6

T

Michael Lentmaier, Fall 2017 Digital Communications: Week 2, Lecture 1

Michael Lentmaier, Fall 2017 Digital Communications: Week 2, Lecture 1



A simple Matlab exercise Fourier transform of other pulses

. . » The Fourier transforms G(f) and sketches of the energy spectra
And this is how it was done: ) . ) . 9y sp
|G(f)|* are given for a number of different elementrary pulses g(r)
1 % Example: rect pulse spectrum O In Appendlx D
§ » Example: half cycle sinusoidal pulse
4 - X=-6:0.01:6;
3= G=sin(pi.*x)./(pi.*x).*exp(-i*pixx); % T=1 1 dB /T
> -6 —4 -2 i 2 4 6
7i|= figure(2) 089 o
8 - subplot(3,1,1); g
9 - plot(x,real(G), 'r',x,imag(G), 'g'); xlabel('fT'); 5'0'67 ®
10 - grid on; 5;0.4 =
11 -40
12-  subplot(3,1,2); 029 \m 0 [
13 - plot(x,abs(G).~2); xlabel('fT'); | o
14 - grid on; 0 0.2 0.4 0.6 0.8 1 .
15 T Figure D.§: [Cael0L iy q.
16 - subplot(3,1,3); : .
17 - plot(x,10.%logl@(abs(G).~2)); xlabel('fT'); Figure D.T: gnes (t)/A- QAT cos(rfT)
18 - set(gca, 'YLin', [-30 @]); Asin(rt/T) 0<t<T Ghes(f) = Flanes ()} = == 1= /T e ImIT
D= id on; Ghes(t) = ro = /
grid or Gnes () { 0 , otherwise Ghes(f = £1/2T) = TjAT/2
B, = A*T/2 Ghes(n/T) = 0 if n = +£3/2,4£5/2, £7/2,...
script Ln 13 Col 34
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Frequency shift operations Example: time raised cosine pulse
» We have seen the effect of a time shift on the Fourier transform o Gyar
0.5
g(t— 1q) G(f) e 2nfta 08 04
0.3
» In a similar way we can characterize a frequency shift f, by os 02
0.2 0.1
2
g(t> e] et A G(f _fC) 06 04 02 O o.2w_u.4 30 20 o 9] 10 T 200 30
. 27[-f‘ t — . .
» Let us make use of the .rel.atlon g=e clos(27rfc t).—l—j sm(2.7rfc 1) x(t) = g(t) -cos(2nfe1) = ge(t+T/2) -cos(2rfot) , f.=20/T
» We can now express this in terms of cosine and sine functions, X(f)/AT
x(t)/A 051
G(f+f.)+G(f — ]
g(1) cos(2nf.t) +— F+f) 5 F=f) 047
. .G(f+f.)—G(f —
g(t) sin2mfet) «— j F4fe) 5 U ) 06 02]
0.1
= by simply changing the carrier frequency f, we can move
our signals to a suitable location along the frequency axis =80 d0 o0 1020
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Back to the transmitted signal

» We have seen how the Fourier transform can be used to
calculate the energy spectrum |X(f)|? of a given signal x(¢)

» Let us now look at the transmitted signal for M-ary modulation

$() = $i0) (1) 1) (1 = T5) 4 ) (1 = 2T) + -+ = Y 5,1 (1 — i T)
i=0
» Message mli| selects the signal alternative to be sent at time (T}

» Since the information bit stream is random, the transmitted signal
s(r) consists of a sequence of random signal alternatives

How can we determine the bandwidth W of the transmitted signal?
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Power Spectral Density

» The random M-ary sequence of messages m/[i] consists of
independent, identically distributed (i.i.d) M-ary symbols

» The probability for each of the M = 2¥ symbols (messages) is
denoted by Py,/ =0,1,.... M —1

» All signal alternatives s,(¢) in the constellation have finite energy

» The average signal over all signal alternatives is denoted a(z),
i.e.,

M—1
a(t)="Y, Prsi(t)
(=0

and its Fourier transform is

M—1
A(f) = ;)P" Salf)

Remark:
Source coding (compression) can be used to remove or reduce
correlations in the information stream
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Power Spectral Density

» Since the signal has no predefined length the energy is not a
good measure (could be infinite according to our model)

» On the other hand, we know that the signal has finite power

» The power spectral density R(f) shows how the average signal
power P is distributed along the frequency axis on average

ﬁ:EbRb:/iR(f) df

» Most of the average signal power P [V?] will be contained within
the main-lobe of R(f) [V?/Hz]

= we can determine the signal bandwidth from R(f)

Our aim is to find R(f) for a given modulation order M and set of M
signal alternatives (constellation)
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R(f): Main Result

» The power spectral density R(f) can be divided into
a continuous part R.(f) and a discrete part Ry(f)

R(f) =R.(f) +Ra(f)

» The general expression for the continuous part is

1 M—1

Rc(f) = f ;)Pn |Sn(f) _A(f)|2

1! 2\ _ AP
_<T5,§)Pn |Sn(f)‘ >_ Ts
» For the discrete part we have

2 oo
Ra() =20 ¥ 50wy
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R(f): Main Result

Assume now that the average signal a(r) = 0 for all ¢
It follows that A(f) = 0 for all f
This simplifies the result to

v

v

v

R(f) = Ro(f) = R, Z—O Py [Su()P = Ry E{|Sin) ()}

» These general results can also be used to study the
consequences that technical errors or impairments in the
transmitter can have on the frequency spectrum

» We will now consider various special cases used in practice
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Example 2.21

Assume equally likely antipodal signal alternatives, such that
s1(t) = —so(t) = g(t)
where g(t) = grec(t), and grec(t) is given in (D.1). Assume also that T < Tp.

i) Calculate the power spectral density R(f).

it) Calculate the bandwidth W defined as the one-sided width of the mainlobe
of R(f), if the information bit rate is 10 [kbps|, and if T = Ty/2.
Calculate also the bandwidth efficiency p.

11) Estimate the attenuation in dB of the first sidelobe of R(f) compared to R(0).

» M =2 with equally likely antipodal signaling s;(r) = —so(z) = g()
» With Py = Py =1/2 and S;(f) = —So(f) = G(f) we get

R(f) =Ry IS1(F)I* = Ry IS0 (f)|* = Ry IG(F)?

» Details for the pulse in Appendix D
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R(f): Binary Signaling

» In the general binary case, i.e., M =2, we have
A(f) = Po So(f) + Py S1(f)
» This simplifies the expression for the power spectral density to

R(f) = Rc(f) + Ra(f)

PP s -sipp + P RDEPSOE & s,

2
77 .

(derivation in Ex. 2.20)

» We will now consider some examples from the compendium
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Example 2.23

Assume equally likely antipodal signal alternatives below. Assume that s1(t) = —so(t) =
gre(t), where the time raised cosine pulse gro(t) is defined in (D.18). Assume also that
T="Ty.

Find an expression for the power spectral density R(f). Calculate the bandwidth W,
defined as the one-sided width of the mainlobe of R(f), if Ry is 10 [kbps|. Calculate
also the bandwidth efficiency p.

v

Same as Example 2.21, but with g,.(¢) pulse
Analogously we get

v

R(f) =Ry |G ()

v

From the one-sided main-lobe we get

W =2/T [Hz]

v

Bandwidth efficiency p = 1/2 [bps/Hz] is the same (why?)
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Example 2.24
Assume Py = Pi and that,
s1(t) = —s0(t) = gre(t) cos(2m fet)

with T = Ty, and f. > 1/T. Hence, a version of binary PSK signaling is considered
here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, de-
fined as the double-sided width of the mainlobe around the carrier frequency
fe. Assume that the information bit rate is 10 [kbps]. Calculate also the bandwidth

» This corresponds to the bandpass case
» Let g, (r) denote the high-frequency pulse

gnf(t) = gre(t)cos(2mfet) and R(f) =R, |th(f)|2

» Using shift operations we get

Grc c Grc —Je 2
R() = Ry (f2+f)+ (f2 Je)
» From the two-sided main-lobe we get
W =4/T [Hz]
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