LUND
UNIVERSITY

EITG05 - Digital Communications

Week 1, Lecture 2

Signal Constellations (p. 31-55)

```
Michael Lentmaier
Thursday, August 31, 2017
```


Signal constellations

- In case of M-ary signaling, one of $M=2^{k}$ messages $m[i]$ is transmitted by its corresponding signal alternative

$$
s_{\ell}(t) \in\left\{s_{0}(t), s_{1}(t), \ldots, s_{M-1}(t)\right\}
$$

- When the message equals $m[i]=j$ then $s_{j}\left(t-i T_{s}\right)$ is sent

$$
s(t)=s_{m[0]}(t)+s_{m[1]}\left(t-T_{s}\right)+s_{m[2]}\left(t-2 T_{s}\right)+\cdots
$$

- The signal constellation is the set of possible signal alternatives
- The mapping defines which message is assigned to which signal

Question: how should we choose the different signals?

Week 1, Lecture 2

Chapter 2: Model of a Digital Communication System

- 2.4 Signal constellations
2.4.1 Pulse amplitude modulation (PAM)
2.4.2 Phase shift keying (PSK)
2.4.3.1 Frequency shift keying (FSK)
2.4.4 Pulse position modulation (PPM)
2.4.5 Quadrature amplitude modulation (QAM)
2.4.6 Pulse width modulation (PWM)
2.4.7.1 Multitone signaling: OFDM

Pages 31 - 55 (excluding 2.4.3.2)
Exercises: Problems 2.11, 2.12, 2.13, 2.14a, 2.28, 2.15
Michael Lentmaier Fall 2017

Pulse Amplitude Modulation (PAM)

- In pulse amplitude modulation the message is mapped into the amplitude only:

$$
s_{\ell}(t)=A_{\ell} g(t), \quad \ell=0,1, \ldots, M-1
$$

- PAM is a natural generalization of binary on-off signaling and antipodal signaling, which are special cases for $M=2$
- A common choice are equidistant amplitudes located symmetrically around zero:

$$
A_{\ell}=-M+1+2 \ell, \quad \ell=0,1, \ldots, M-1
$$

- Example: $M=4, A_{0}=-3, A_{1}=-1, A_{2}=+1, A_{3}=+3$
- The same constellation

$$
\left\{A_{\ell}\right\}_{\ell=0}^{M-1}=\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(M-1)\}
$$

could also be used with other mappings

Example of 4-ary PAM

What is the message sequence $m[i]$?

Euclidean distances of PAM signals

- The squared Euclidean distance between two PAM signal alternatives is

$$
D_{i, j}^{2}=\int_{0}^{T_{s}}\left(s_{i}(t)-s_{j}(t)\right)^{2} d t=E_{g}\left(A_{i}-A_{j}\right)^{2}
$$

- With $P_{\ell}=\frac{1}{M}$ and $A_{\ell}=-M+1+2 \ell$ this becomes

$$
D_{i, j}^{2}=4 E_{g}(i-j)^{2}
$$

Compare this with Example 2.7 on page 28

- We will later see that the minimum Euclidean distance $\min _{i, j} D_{i, j}$ strongly influences the error probability of the receiver
- For this reason, equidistant constellations are often used

Symbol Energy of PAM

- The symbol energy of a PAM signal is

$$
E_{\ell}=\int_{0}^{T_{s}} s_{\ell}^{2}(t) d t=\int_{0}^{T_{s}} A_{\ell}^{2} g^{2}(t) d t
$$

- Using

$$
E_{g}=\int_{0}^{T_{s}} s_{\ell}^{2}(t) d t
$$

we can write the average symbol energy as

$$
\bar{E}_{s}=E_{g} \sum_{\ell=0}^{M-1} P_{\ell} A_{\ell}^{2}
$$

- Often the messages are equally likely, i.e., $P_{\ell}=\frac{1}{M}=2^{-k}$, and for the symmetric constellation from above we get

$$
\bar{E}_{s}=E_{g} \frac{M^{2}-1}{3} .
$$

Michael Lentmaier, Fall 2017 \qquad

Bandpass M-ary PAM

- In many applications we want to transmit signals at high frequencies, centered around a carrier frequency f_{c}
- To achieve this, we can multiply the original PAM signal $s(t)$ with a sinusoidal signal (more about this we see in Chap. 3)

$$
s_{b p}(t)=s(t) \cdot \cos \left(2 \pi f_{c} t\right)=\sum_{i=0}^{\infty} A_{m[i]} g\left(t-i T_{s}\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

Example:

Phase Shift Keying (PSK)

- We have seen that with PAM signaling the message modulates the amplitude A_{ℓ} of the signal $s_{\ell}(t)$
- The idea of phase shift keying signaling is to modulate instead the phase v_{ℓ} of $s_{\ell}(t)$

$$
s_{\ell}(t)=g(t) \cos \left(2 \pi f_{c} t+v_{\ell}\right), \quad \ell=0,1, \ldots, M-1,
$$

- If we choose

$$
f_{c}=n R_{s}
$$

for some positive integer n, then n full cycles of the carrier wave are contained within a symbol interval T_{s}

- $M=2$: binary PSK (BPSK) with $v_{0}=0$ and $v_{1}=\pi$ is equivalent to binary PAM with $A_{0}=+1$ and $A_{1}=-1$
- $M=4$: 4-ary PSK is also called quadrature PSK (QPSK)

Symmetric M-ary PSK

- Normally, the phase alternatives are located symmetrically on a circle

$$
v_{\ell}=\frac{2 \pi \ell}{M}+v_{\text {const }}, \quad \ell=0,1, \ldots, M-1
$$

where $v_{\text {const }}$ is a contant phase offset value

- If $P_{\ell}=\frac{1}{M}$, and $f_{c} \gg R_{s}$, then the average symbol energy is
and

$$
\begin{gathered}
\bar{E}_{s}=\frac{E_{g}}{2} \\
D_{i, j}^{2}=E_{g}\left(1-\cos \left(v_{i}-v_{j}\right)\right)
\end{gathered}
$$

- PSK has a constant symbol energy

Example of QPSK

What is the message sequence $m[i]$?

Frequency Shift Keying (FSK)

- Instead of amplitude and phase, the message can modulate the frequency f_{ℓ}

$$
s_{\ell}(t)=A \cos \left(2 \pi f_{\ell} t+v\right), \quad \ell=0,1, \ldots, M-1
$$

- Amplitude A and phase v are constants
- In many applications the frequency alternatives f_{ℓ} are chosen such that the signals are orthogonal, i.e.,

$$
\int_{0}^{T_{s}} s_{i}(t) s_{j}(t) d t=0, \quad i \neq j
$$

- If $v=0$ or $v=-\pi / 2$ (often used), then we can choose

$$
f_{\ell}=n_{0} \frac{R_{s}}{2}+\ell I \frac{R_{s}}{2} \stackrel{\text { def }}{=} f_{0}+\ell f_{\Delta}, \quad \ell=0,1, \ldots, M-1,
$$

where n_{0} and I are positive integers

Example of 4-ary FSK

What is the message sequence $m[i]$?

Energy and Distance of M-ary FSK

- Choosing $f_{\ell} \gg R_{s}$ and the orthogonal frequency alternatives form above we get

$$
\begin{aligned}
\bar{E}_{s} & =\frac{A^{2} T_{s}}{2} \\
D_{i, j}^{2} & =E_{i}+E_{j}=A^{2} T_{s}
\end{aligned}
$$

- Observe that \bar{E}_{s} is the same as for M-ary PSK with $E_{g}=A^{2} T_{s}$
- A special property of FSK is that the Euclidean distance $D_{i, j}$ is the same for any pair (i, j) of signals
- This means that we can increase M (and thus the bit rate R_{b}) without increasing the error probability

What happens with the bandwidth W if M increases?

Pulse Position Modulation (PPM)

- In pulse position modulation the message modulates the position of a short pulse $c(t)$ within the symbol interval T_{s}

$$
s_{\ell}(t)=c\left(t-\ell \frac{T_{s}}{M}\right), \quad \ell=0,1, \ldots, M-1
$$

- The duration T of the pulse $c(t)$ has to satisfy $T \leq T_{s} / M$
- The pulses are orthogonal and we get

$$
\bar{E}_{s}=E_{c}, \quad D_{i, j}^{2}=E_{i}+E_{j}=2 E_{c}
$$

Example:

Used for low-power optical links (e.g. IR remote controls)

Pulse Width Modulation (PWM)

- In pulse width modulation the message modulates the duration T of a pulse $c(t)$ within the symbol interval T_{s}

$$
s_{\ell}(t)=c\left(\frac{t}{t_{\ell}}\right), \quad \ell=0,1, \ldots, M-1
$$

- The duration of the pulse $c(t)$ is equal to $T=1$
- It follows that $s_{\ell}(t)$ is zero outside the interval $0<t<t_{\ell}$
- It is assumed that $t_{\ell}<T_{s}$
- Average symbol energy: $\bar{E}_{s}=E_{c} \bar{t}_{\ell}$

Example:

Used in control applications, not much for data transmission (e.g., speed of CPU fan, LED intensity)

Quadrature Amplitude Modulation (QAM)

- With QAM signaling the message modulates the amplitudes of two orthogonal signals (inphase and quadrature component)

$$
s_{\ell}(t)=A_{\ell} g(t) \cos \left(2 \pi f_{c} t\right)-B_{\ell} g(t) \sin \left(2 \pi f_{c} t\right), \quad \ell=0,1, \ldots, M-1
$$

- We can interpret $s_{\ell}(t)$ as the sum of two bandpass PAM signals
- Motivation: We can transmit two signals independently using the same carrier frequency and bandwidth
- The signal $s_{\ell}(t)$ can also be expressed as

$$
s_{\ell}(t)=g(t) \sqrt{A_{\ell}^{2}+B_{\ell}^{2}} \cos \left(2 \pi f_{c} t+v_{\ell}\right)
$$

- It follows that QAM is a generalization of PSK:
selecting $A_{\ell}^{2}+B_{\ell}^{2}=1$ we can put the information into v_{ℓ} and get

$$
A_{\ell}=\cos \left(v_{\ell}\right), \quad B_{\ell}=\sin \left(v_{\ell}\right)
$$

Michael Lentmaier, Fall 2017

$$
\text { Digital Communications: Week 1, Lecture } 2
$$

Energy and Distance of M-ary QAM

- Choosing $f_{c} \gg R_{s}$ it can be shown that

$$
\begin{aligned}
E_{\ell} & =\left(A_{\ell}^{2}+B_{\ell}^{2}\right) \frac{E_{g}}{2} \\
D_{i, j}^{2} & =\left(\left(A_{i}-A_{j}\right)^{2}+\left(B_{i}-B_{j}\right)^{2}\right) \frac{E_{g}}{2}
\end{aligned}
$$

- A common choice are equidistant amplitudes located symmetrically around zero: (two \sqrt{M}-ary PAM with $k / 2$ bits each)

$$
\left\{A_{\ell}\right\}_{\ell=0}^{\sqrt{M}-1}=\left\{B_{\ell}\right\}_{\ell=0}^{\sqrt{M}-1}=\{ \pm 1, \pm 3, \pm 5, \ldots, \pm(\sqrt{M}-1)\}
$$

- For equally likely messages $P_{\ell}=\frac{1}{M}$, this results in the average energy

$$
\bar{E}_{s}=\sum_{\ell=0}^{M-1} \frac{1}{M} E_{\ell}=\frac{2(M-1)}{3} \frac{E_{g}}{2}
$$

Geometric interpretation

- It is possible to describe QAM signals as two-dimensional vectors in a so-called signal space
- For this the signal

$$
s_{\ell}(t)=A_{\ell} g(t) \cos \left(2 \pi f_{c} t\right)-B_{\ell} g(t) \sin \left(2 \pi f_{c} t\right)
$$

is written as

$$
s_{\ell}(t)=s_{\ell, 1} \phi_{1}(t)+s_{\ell, 2} \phi_{2}(t)
$$

- Here $s_{\ell, 1}=A_{\ell} \sqrt{E_{g} / 2}$ and $s_{\ell, 2}=B_{\ell} \sqrt{E_{g} / 2}$ are the coordinates
- The functions $\phi_{1}(t)$ and $\phi_{2}(t)$ form an orthonormal basis of a vector space that spans all possible transmit signals:

$$
\phi_{1}(t)=\frac{g(t) \cos \left(2 \pi f_{c} t\right)}{\sqrt{E_{g} / 2}}, \quad \phi_{2}(t)=\frac{g(t) \sin \left(2 \pi f_{c} t\right)}{\sqrt{E_{g} / 2}}
$$

This looks abstract, but can be very useful!

Signal space representation of QAM

- Now we can describe each signal alternative $s_{\ell}(t)$ as a point with coordinates ($s_{\ell, 1}, s_{\ell, 2}$) within a constellation diagram
4-QAM

16-QAM

$$
s_{\ell, 1}=A_{\ell} \sqrt{E_{g} / 2}, \quad s_{\ell, 2}=B_{\ell} \sqrt{E_{g} / 2}
$$

- The signal energy E_{ℓ} and the Euclidean distance $D_{i, j}^{2}$ can be determined in the signal space

Signal space representation of PSK and PAM

- PSK and PAM can be seen as a special cases of QAM:

$$
s_{\ell, 1}=\cos \left(v_{\ell}\right) \sqrt{E_{g} / 2}, \quad s_{\ell, 2}=\sin \left(v_{\ell}\right) \sqrt{E_{g} / 2}
$$

$$
s_{\ell, 1}=(-M+1+2 \ell) \sqrt{E_{g}}
$$

Multitone Signaling: OFDM

- With FSK signaling, orthogonal signal alternatives are transmitted at different frequencies
- Disadvantage: only one frequency can be used at the same time
- Orthogonal Frequency Division Multiplexing (OFDM): use QAM at N orthogonal frequencies and transmit the sum
- OFDM is widely used in modern communication systems: WLAN, LTE, DAB (radio), DVB (TV), DSL

Example:

$N=4096$
64-ary QAM at each frequency (carrier)
Then an OFDM signal carries $4096 \cdot 6=24576$ bits
How does a typical OFDM signal look like?
How can such a system be realized in practice?
\Rightarrow OFDM will be explained in detail in the advanced course

Example of an OFDM symbol

$N=16,16$-ary QAM in each subcarrier (p.52)

$$
x(t)=\sum_{n=0}^{N-1}\left(a_{I}[n] g(t) \cos \left(2 \pi f_{n} t\right)-a_{Q}[n] g(t) \sin \left(2 \pi f_{n} t\right)\right), \quad 0 \leq t \leq T_{s}
$$

In this example the symbol $x(t)$ carries $16 \cdot 4=64$ bits

