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Signal constellations

I In case of M-ary signaling, one of M = 2

k messages m[i] is
transmitted by its corresponding signal alternative

s`(t) 2 {s

0

(t),s
1

(t), . . . ,s
M�1

(t)}

I When the message equals m[i] = j then s

j

(t � iT

s

) is sent

s(t) = s

m[0](t)+ s

m[1](t �T

s

)+ s

m[2](t �2T

s

)+ · · ·

I The signal constellation is the set of possible signal alternatives
I The mapping defines which message is assigned to which signal

Question: how should we choose the different signals?
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Pulse Amplitude Modulation (PAM)

I In pulse amplitude modulation the message is mapped into the
amplitude only:

s`(t) = A` g(t) , ` = 0,1, . . . ,M �1

I PAM is a natural generalization of binary on-off signaling and
antipodal signaling, which are special cases for M = 2

I A common choice are equidistant amplitudes located
symmetrically around zero:

A` = �M +1+2` , ` = 0,1, . . . ,M �1

I Example: M = 4, A

0

= �3, A

1

= �1, A

2

= +1, A

3

= +3

I The same constellation

{A`}M�1

`=0

= {±1,±3,±5, . . . ,±(M �1)}

could also be used with other mappings
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Example of 4-ary PAM
2.4. Signal Constellations 33
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Figure 2.7: An example of a sequence s(t) of 4-ary PAM signal alternatives (see
(2.44)). The pulse shape is ghcs(t) (defined in (D.13)) with amplitude A and
duration T = 3Ts/4. The time axis shows the time interval 0  t  8Ts.

assumed that (2.39) applies. Hence, the set of possible amplitudes {A�}M�1
�=0 is

(from (2.39)),

{A�}M�1
�=0 = {±1, ±3, ±5, . . . , ±(M � 1)} (2.45)

We then obtain,

Ēs = Eg

M�1
�

�=0

1

M
(�M + 1 + 2`)2 = Eg

M2 � 1

3
(2.46)

where it is used that (see [51]),

M�1
�

n=0

n =
(M � 1)M

2
(2.47)

and
M�1
�

n=0

n2 =
(M � 1)M(2M � 1)

6
(2.48)

In this special case the squared Euclidean distance D2
i,j in (2.43) is,

D2
i,j = 4Eg(i � j)2 (2.49)

A` = �M +1+2` , ` = 0,1, . . . ,M �1

What is the message sequence m[i]?
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Symbol Energy of PAM

I The symbol energy of a PAM signal is

E` =
Z

T

s

0

s

2

`(t) dt =
Z

T

s

0

A

2

` g

2(t) dt

I Using

E

g

=
Z

T

s

0

s

2

`(t) dt

we can write the average symbol energy as

E

s

= E

g

M�1

Ầ
=0

P` A

2

`

I Often the messages are equally likely, i.e., P` = 1

M

= 2

�k, and for
the symmetric constellation from above we get

E

s

= E

g

M

2 �1

3

.
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Euclidean distances of PAM signals

I The squared Euclidean distance between two PAM signal
alternatives is

D

2

i,j =
Z

T

s

0

(s
i

(t)� s

j

(t))2

dt = E

g

(A
i

�A

j

)2

I With P` = 1

M

and A` = �M +1+2` this becomes

D

2

i,j = 4E

g

(i� j)2

Compare this with Example 2.7 on page 28
I We will later see that the minimum Euclidean distance min

i,j D

i,j

strongly influences the error probability of the receiver
I For this reason, equidistant constellations are often used
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Bandpass M-ary PAM
I In many applications we want to transmit signals at high

frequencies, centered around a carrier frequency f

c

I To achieve this, we can multiply the original PAM signal s(t) with
a sinusoidal signal (more about this we see in Chap. 3)

s

bp

(t) = s(t) · cos(2p f

c

t) =
•

Â
i=0

A

m[i] g(t � i T

s

) · cos(2p f

c

t)

Example:

3.1. Bandpass Signals: Basic Concepts 121

transmission (VSB), one sideband and only a fraction of the other sideband is
transmitted, see [44], [22], [59].

In Example 3.1 below, digital information is transmitted with 4-ary PAM tech-
nique and DSB-SC modulation (i.e. 4-ary bandpass PAM).

WLPWLP fc fc

WLP2

| X  (f) |I | X           (f) |dsb-sc

f [Hz]

a

f [Hz]

a) b)
Lower sideband Upper sideband

= | F{x  (t)cos(2  f  t)} |cI π

0

a/2

Figure 3.3: Illustrating the frequency content in xI(t) and xdsb�sc(t). a) |XI(f)|;
b) |Xdsb�sc(f)|.

EXAMPLE 3.1
Assume that s(t) is a 4-ary PAM signal, s(t) = �

n=�� Am[n]grec(t � nTs), and s(t)
is illustrated below in the time interval 0 � t � 7Ts.
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s(t) above is transmitted with DSB-SC technique:

xdsb-sc (t)

fc tcos(2 π )

s(t)

Assume that the carrier frequency fc � 1/Ts. The signal xdsb�sc(t) is also referred to
as a 4-ary bandpass PAM signal. Sketch xdsb�sc(t) in the time interval 0 � t � 7Ts.

Solution:
A symbol interval Ts contains many periods 1/fc, and within such a period the baseband

122 Chapter 3. Information Transmission with Carrier Modulation ...

signal s(t) above is constant. The signal xdsb�sc(t) is shown below where fc = 10/Ts

has been used.
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�
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(t
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A

�

As usual the energy Edsb�sc, and the energy spectrum of xdsb�sc(t) in (3.3), are
important parameters,

Edsb�sc =

Z �

��
(xI(t) cos(�ct))

2dt = ExI /2 (3.6)

Using (3.4) it is found that,

|Xdsb�sc(f)|2 = Xdsc�sc(f)X�
dsb�sc(f) =

1

4
|XI(f + fc) + XI(f � fc)|2 =

=
1

4
|XI(f + fc)|2 +

1

4
|XI(f � fc)|2 +

1

2
Re{XI(f + fc)XI(f � fc)

� �� �

� 0

} (3.7)

If it is assumed that fc � WLP , then only the first two terms in (3.7) are
significant, resulting in,

|Xdsb�sc(f)|2 =
1

4
|XI(f + fc)|2 +

1

4
|XI(f � fc)|2 (3.8)

Actually, this result is a special case of the result in (2.166). So, the energy
spectrum of xdsb�sc(t) is a frequency shifted (and scaled) version of the energy
spectrum of xI(t). We also have (Parseval’s relation in (2.150)),

Edsb�sc =

Z �

��
|Xdsb�sc(f)|2df = ExI /2 (3.9)

In communication applications xI(t) is in general a sample function of a stochas-
tic process, due to the stochastic nature of the underlying information signal.
This means that the particular realization xI(t) (in ��  t  �), must be
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Phase Shift Keying (PSK)

I We have seen that with PAM signaling the message modulates
the amplitude A` of the signal s`(t)

I The idea of phase shift keying signaling is to modulate instead
the phase n` of s`(t)

s`(t) = g(t) cos(2p f

c

t + n`) , ` = 0,1, . . . ,M �1 ,

I If we choose
f

c

= n R

s

for some positive integer n, then n full cycles of the carrier wave
are contained within a symbol interval T

s

I
M = 2: binary PSK (BPSK) with n

0

= 0 and n
1

= p is equivalent to
binary PAM with A

0

= +1 and A

1

= �1

I
M = 4: 4-ary PSK is also called quadrature PSK (QPSK)
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Example of QPSK2.4. Signal Constellations 37
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Figure 2.8: An example of a sequence of 4-ary PSK (QPSK) signal alternatives.
The pulse shape is grec(t) (defined in (D.3)) with amplitude A and duration
T = Ts. The time axis shows the time interval 0  t  4Ts.

With M-ary PSK signals the average symbol energy is,

Ēs =
M�1
�

�=0

P�

Z Ts

0
g2(t) cos2(2�fct + ��)dt =

=
M�1
�

�=0

P�

�

�

�

�

�

Z Ts

0

g2(t)

2
dt +

Z Ts

0

g2(t)

2
cos(2�2fct + 2��)dt

� �� �

negligible

�

�

�

�

�

=

=
M�1
�

�=0

P�Eg/2 = Eg/2 (2.58)

where the identity (B.7) in Appendix B,

cos2(x) = (1 + cos(2x))/2 (2.59)

has been used. In the last equality in (2.58) it is assumed that g(t) and fc are
chosen such that the double carrier-frequency term integrates to zero, or that it
can be considered negligible compared to Eg/2. As an example; If g(t) is a Ts long
rectangular (NRZ) pulse (see grec(t) in Appendix D), and if fc = nRs ((2.56))
or if fc � Rs, then (2.58) holds. Note that all signal alternatives have equal
energies (= Eg/2), in contrast to M-ary PAM signaling.

With the same assumptions on g(t) and fc as in (2.58), the squared Euclidean

f

c

= 2 R

s

, n
0

= 0, n
1

= p/2, n
2

= p, and n
3

= 3p/2

What is the message sequence m[i]?
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Symmetric M-ary PSK

I Normally, the phase alternatives are located symmetrically on a
circle

n` =
2p `

M

+ n
const

, ` = 0,1, . . . ,M �1 ,

where n
const

is a contant phase offset value

I If P` = 1

M

, and f

c

� R

s

, then the average symbol energy is

E

s

=
E

g

2

and D

2

i,j = E

g

(1� cos(n
i

�n
j

))

I PSK has a constant symbol energy
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Frequency Shift Keying (FSK)

I Instead of amplitude and phase, the message can modulate the
frequency f`

s`(t) = A cos(2p f` t + n) , ` = 0,1, . . . ,M �1

I Amplitude A and phase n are constants
I In many applications the frequency alternatives f` are chosen

such that the signals are orthogonal, i.e.,
Z

T

s

0

s

i

(t) s

j

(t) dt = 0 , i 6= j

I If n = 0 or n = �p/2 (often used), then we can choose

f` = n

0

R

s

2

+ ` I

R

s

2

def

= f

0

+ ` fD , ` = 0,1, . . . ,M �1 ,

where n

0

and I are positive integers
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Example of 4-ary FSK42 Chapter 2. Model of a Digital Communication System
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It should also be mentioned here that a so-called Simplex signal constella-
tion (see refs. [68], [60]) is obtained by subtracting the average signal a(t) =
�M�1

�=0 P�s�(t) from each of the M (orthogonal) FSK signal alternatives s�(t) in
(2.68). Hence, {s�(t) � a(t)}M�1

�=0 is then a Simplex signal constellation.

2.4.3.1 M-dimensional vector representation of orthogonal M-ary FSK
signal alternatives

As for the previous signal constellations it is convenient to use an alternative
description of orthogonal M-ary FSK signal alternatives. Since two di�erent sig-
nal alternatives by definition are orthogonal, we can scale each signal alternative
and thereby obtain M basis functions. So,

s�(t) =
p

E�
� �� �

s�,�+1

· s�(t)p
E�

� �� �

��+1(t)

= s�,�+1��+1(t), ` = 0, 1, . . . , M � 1 (2.78)

The important point here is that each signal alternative s�(t) can be expressed
by M coordinates, s�,1,...,s�,M combined with M basis functions respectively. As
before, the energy in each basis function is equal to one, and two basis functions
are orthogonal (see (2.67)). Since the basis functions are known, the specific
signal alternative s�(t) is completely defined by the M coordinates s�,1,...,s�,M .
Note that for signal alternative s�(t), all coordinates except s�,�+1 are equal to
zero, and s�,�+1 =

p
E�.

Consequently, orthogonal M-ary FSK signal alternatives may be described by
using an M-dimensional vector. This is illustrated in Figure 5.2 on page 331
(replace the M-dimensional vector zj by sj = (sj,1, sj,2, . . . , sj,M )).

n = �p
2

, f

0

= R

s

, f

1

= 2R

s

, f

2

= 3R

s

, and f

3

= 4R

s

What is the message sequence m[i]?
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Energy and Distance of M-ary FSK

I Choosing f` � R

s

and the orthogonal frequency alternatives form
above we get

E

s

=
A

2

T

s

2

D

2

i,j = E

i

+E

j

= A

2

T

s

I Observe that E

s

is the same as for M-ary PSK with E

g

= A

2

T

s

I A special property of FSK is that the Euclidean distance D

i,j is
the same for any pair (i, j) of signals

I This means that we can increase M (and thus the bit rate R

b

)
without increasing the error probability

What happens with the bandwidth W if M increases?
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Pulse Position Modulation (PPM)
I In pulse position modulation the message modulates the position

of a short pulse c(t) within the symbol interval T

s

s`(t) = c

✓

t � `
T

s

M

◆

, ` = 0,1, . . . ,M �1

I The duration T of the pulse c(t) has to satisfy T  T

s

/M

I The pulses are orthogonal and we get

E

s

= E

c

, D

2

i,j = E

i

+E

j

= 2 E

c

Example:

44 Chapter 2. Model of a Digital Communication System

interval Ts. In 0  t  Ts, the `:th signal alternative, s�(t), may be expressed
as,

s�(t) = c(t � `Ts/M) ` = 0, 1, . . . , M � 1 (2.82)

where the pulse c(t) equals zero outside the time interval 0  t  Ts/M . Note
that signal alternative s�(t) equals zero outside the time slot `Ts/M  t 
(` + 1)Ts/M . So, the message modulates only the position of the pulse c(t)
through the delay alternatives `Ts/M . Observe that the signal alternatives are
orthogonal since the product of two signal alternatives equals zero,

si(t)sj(t)dt = 0, i 6= j (2.83)

Let Ec denote the energy in the pulse c(t). Then the following results are
obtained,

E� =

Z Ts

0
s2

�(t)dt =

Z (�+1)Ts/M

�Ts/M
c2(t � `Ts/M)dt = Ec (2.84)

Ēs =
M�1
�

�=0

P�E� = Ec (2.85)

D2
i,j =

Z Ts

0
(si(t) � sj(t))

2dt = Ei + Ej = 2Ec (2.86)

Hence, all signal alternatives have the same energy since a time delayed version
c(t��) of a waveform c(t) does not change the energy content. Signal alternatives
for M-ary PPM are very di�erent from the signal alternatives used in orthogonal
M-ary FSK. However, in terms of energy- and Euclidean distance-characteristics,
the two signal constellations are identical (let Ec = A2Ts/2 and compare with
(2.75)–(2.77)).

EXAMPLE 2.12
Assume that we have a binary sequence of messages m[i] that is 1,0,1,1,1,0,0. Sketch
the transmitted signal s(t) in (2.26) in the time interval 0 � t � 7Tb if binary PPM
(BPPM) signaling is used. Assume that c(t) in (2.82) has a rectangular shape with
amplitude equal to 2.

Solution:
The i:th message m[i] is represented by the waveform sm[i](t�iTs), and Ts = kTb = Tb.
The two signal alternatives are s0(t) = c(t) and s1(t) = c(t � Ts/2). So, we find that
s(t) is,

bT bT2 bT3 bT4 bT5 bT6 bT7

2
(1) (0) (1) (1) (1) (0)

-2

s(t)

t

(0)

�

Used for low-power optical links (e.g. IR remote controls)
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Pulse Width Modulation (PWM)
I In pulse width modulation the message modulates the duration T

of a pulse c(t) within the symbol interval T

s

s`(t) = c

✓

t

t`

◆

, ` = 0,1, . . . ,M �1

I The duration of the pulse c(t) is equal to T = 1

I It follows that s`(t) is zero outside the interval 0  t  t`
I It is assumed that t` < T

s

I Average symbol energy: E

s

= E

c

t`

Example:

A

t

s(t) Ts

t�

Used in control applications, not much for data transmission
(e.g., speed of CPU fan, LED intensity)
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Quadrature Amplitude Modulation (QAM)

I With QAM signaling the message modulates the amplitudes of
two orthogonal signals (inphase and quadrature component)

s`(t) = A` g(t) cos(2p f

c

t)�B` g(t) sin(2p f

c

t) , ` = 0,1, . . . ,M �1

I We can interpret s`(t) as the sum of two bandpass PAM signals
I Motivation: We can transmit two signals independently using

the same carrier frequency and bandwidth
I The signal s`(t) can also be expressed as

s`(t) = g(t)
q

A

2

` +B

2

` cos(2p f

c

t + n`)

I It follows that QAM is a generalization of PSK:

selecting A

2

` +B

2

` = 1 we can put the information into n` and get

A` = cos(n`) , B` = sin(n`)
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Energy and Distance of M-ary QAM

I Choosing f

c

� R

s

it can be shown that

E` =
�

A

2

` +B

2

`

�

E

g

2

D

2

i,j =
�

(A
i

�A

j

)2 +(B
i

�B

j

)2

�

E

g

2

I A common choice are equidistant amplitudes located
symmetrically around zero: (two

p
M-ary PAM with k/2 bits each)

{A`}
p

M�1

`=0

= {B`}
p

M�1

`=0

=
n

±1,±3,±5, . . . ,±
⇣p

M �1

⌘o

I For equally likely messages P` = 1

M

, this results in the average
energy

E

s

=
M�1

Ầ
=0

1

M

E` =
2(M �1)

3

E

g

2
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Geometric interpretation

I It is possible to describe QAM signals as two-dimensional
vectors in a so-called signal space

I For this the signal

s`(t) = A` g(t) cos(2p f

c

t)�B` g(t) sin(2p f

c

t)

is written as
s`(t) = s`,1 f

1

(t)+ s`,2 f
2

(t)

I Here s`,1 = A`

p

E

g

/2 and s`,2 = B`

p

E

g

/2 are the coordinates
I The functions f

1

(t) and f
2

(t) form an orthonormal basis of a
vector space that spans all possible transmit signals:

f
1

(t) =
g(t) cos(2p f

c

t)
p

E

g

/2

, f
2

(t) =
g(t) sin(2p f

c

t)
p

E

g

/2

This looks abstract, but can be very useful!
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Signal space representation of QAM

I Now we can describe each signal alternative s`(t) as a point with
coordinates (s`,1,s`,2) within a constellation diagram

5.1. The MAP Receiver for the AWGN Channel 331

In Figure 5.2 examples of these signal constellations are shown in signal space,
for di�erent values of M . Note that for M-ary PSK the signal points lie on a
circle with radius

p

Ēs =
p

Eg/2.

2-PAM 4-PAM 8-PAM

φ1 φ1
φ1

z0 z0z0 z1 z1 z2 z3 z4z1 z2 z3 z5 z6 z7

2-PSK
φ2

z1 z0
φ1

(ν =2π M )

4-PSK (QPSK)
φ2

φ1

z2

z1

z3

z0

φ2

8-PSK

φ1

z7z6

z5

z4

z3
z2

z1
z0

2-FSK

φ1

φ2

φ2

z1
z0

3-FSK
φ3

z0

z1
z2

4-QAM 16-QAM 64-QAM

φ2

φ2φ2

φ1 φ1 φ1

0 0 0

φ1

Figure 5.2: Examples of M-ary PAM, M-ary PSK, M-ary FSK and M-ary QAM
signal constellations in signal space. See also the corresponding subsections in
Chapter 2.

To be able to calculate the average received symbol energy for the signal con-
stellation {z�(t)}M�1

�=0 , the energy of the individual signals zj(t) first has to be
calculated,

Ej =

Z Ts

0
z2

j (t)dt (5.5)

However, there exists an alternative way to obtain the energy Ej directly from

s`,1 = A`

q

E

g

/2 , s`,2 = B`

q

E

g

/2

I The signal energy E` and the Euclidean distance D

2

i,j can
be determined in the signal space
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Signal space representation of PSK and PAM
I PSK and PAM can be seen as a special cases of QAM:

5.1. The MAP Receiver for the AWGN Channel 331

In Figure 5.2 examples of these signal constellations are shown in signal space,
for di�erent values of M . Note that for M-ary PSK the signal points lie on a
circle with radius

p

Ēs =
p

Eg/2.
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Figure 5.2: Examples of M-ary PAM, M-ary PSK, M-ary FSK and M-ary QAM
signal constellations in signal space. See also the corresponding subsections in
Chapter 2.

To be able to calculate the average received symbol energy for the signal con-
stellation {z�(t)}M�1

�=0 , the energy of the individual signals zj(t) first has to be
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Multitone Signaling: OFDM

I With FSK signaling, orthogonal signal alternatives are
transmitted at different frequencies

I Disadvantage: only one frequency can be used at the same time
I Orthogonal Frequency Division Multiplexing (OFDM):

use QAM at N orthogonal frequencies and transmit the sum
I OFDM is widely used in modern communication systems:

WLAN, LTE, DAB (radio), DVB (TV), DSL

Example:
N = 4096

64-ary QAM at each frequency (carrier)

Then an OFDM signal carries 4096 ·6 = 24576 bits

How does a typical OFDM signal look like?

How can such a system be realized in practice?
) OFDM will be explained in detail in the advanced course
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Example of an OFDM symbol
N = 16, 16-ary QAM in each subcarrier (p. 52)52 Chapter 2. Model of a Digital Communication System
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Figure 2.11: An example of a specific OFDM symbol x(t) given in (2.115). The
figure shows x(t)/A over the symbol interval 0  t  Ts.

common property of this kind of signals is that relatively high signal peaks may
occur (constructive and destructive addition of the N signals within a symbol
interval). This is referred to as the peak-to-average ratio (PAR) problem asso-
ciated with multicarrier modulation (see ref. [43]).

EXAMPLE 2.15
Consider an OFDM system, designed for the 5 GHz band, having the following pa-
rameters in HIPERLAN/2 and IEEE 802.11a (proposed WLAN systems compared in
[11]): Ts = 4µs, Tobs = 3.2µs, �h = 0.8µs, and the number of information carrying
subchannels is Ndata = 48.

a) Calculate the symbol rate in each subchannel.

b) Calculate the total information bit rate if all subchannels use:

i) binary PSK ii) 64-ary QAM

(In HIPERLAN/2 and IEEE802.11a also QPSK and 16-ary QAM are used.)

Solution:

a) Rs = 1/Ts = 0.25 · 106 [symbol/s]

b) The subchannel bit rates are,

Rb,n = knRs =
0.25 [Mbps] i)
1.5 [Mbps] ii)

So, the total bit rate is

Rb =
48 · 0.25 = 12 [Mbps] i)
48 · 1.5 = 72 [Mbps] ii)

x(t) =
N�1

Â
n=0

(a
I

[n] g(t) cos(2p f

n

t)�a

Q

[n] g(t) sin(2p f

n

t)) , 0  t  T

s

In this example the symbol x(t) carries 16 ·4 = 64 bits
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