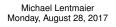


EITG05 – Digital Communications

Week 1, Lecture 1

Introduction, Overview, Basic Concepts (p. 1-32)



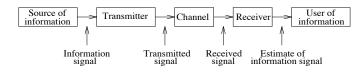
Analog versus digital

- Analog communication: the original messages produced by the source are analog
- Digital communication: the messages are digital, i.e., can be represented by discrete numbers (digits)
- Example 1: I speak and you listen to the acoustic sound wave
- Example 2: I record my speech to MP3 and send it to you, who plays it back on your computer or phone
- Example 3: I use morse code and a flashlight to transmit a message to my neighbor

In all cases some analog medium has to be used during the transmission at some point

What is communication?

- The purpose of a communication system is to transmit messages (information) from a source to a destination
 Examples: sound, picture, movie, text, etc.
- The messages are converted into signals that are suitable for transmission
- > The physical medium for transmission is called the channel



The received signal is used to estimate the messages

Can you give some examples?

Michael Lentmaier, Fall 2017 Digital Communications: Week 1, Lecture 1

Digital Communications

We are in a global digital (r)evolution

- Mobile data and telephony (GSM, EDGE, 3G, 4G, 5G)
- Digital radio and television, Bluetooth, WLAN
- ► Data storage, CD, DVD, Flash, magnetic storage
- Optical fiber, DSL (long range, high rate)
- Cloud computing, big data, distributed storage
- Connected devices, Internet of things, machine-to-machine communication, distributed control, cyber physical systems

The large number of different application scenarios require flexible communication solutions (data rate / delay / reliability / complexity)

Digital Communications: Week 1. Lecture 1

Remark storage of data falls also into the category of our communication system model (check why)

Scope of this course

- Transmitter principles: bits to analog signals (Chap. 2)
- Characteristics of the communication link (Chap. 3,6)
- ▶ Receiver principles: analog noisy signals to bits (Chap. 4,5,6)

Requirements:

- Data should arrive correctly at the receiver
- High bit rates are desireable
- Energy/power efficiency
- Bandwidth efficiency

What are the technical solutions and challenges?

Specialisering KS Kommunikationssystem mot dubbelexamen

lp2

Michael Lentmaier, Fall 2017

lp1

Digital Communications: Week 1, Lecture 1

Related courses from the wireless program

lp4

Not in this course

- Analog to digital conversion, sampling theorem, quantization
 ⇒ basic signals & systems or signal processing course
- Source coding (compression)
 ⇒ covered in information theory course (elective)
- Channel coding (robust and reliable communication)
 ⇒ covered in separate course (elective)
- Cryptography (secure communication)
- \Rightarrow covered in separate course (elective))

There exist a large number of specialized courses that can be taken after this basic course.

There is also a project course in wireless communications.

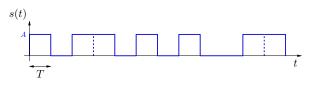
- Michael Lentmaier, Fall 2017
- Digital Communications: Week 1, Lecture 1

The Transmitter

How can we map digital data to analog signals?

A simple approach:

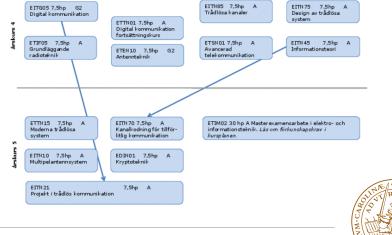
apply some voltage A during transmission of a 1



Basic operation: (more general)

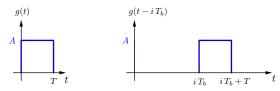
represent the sequence of information bits b[i] by a sequence of analog waveforms, resulting in the transmit signal s(t)

Michael Lentmaier, Fall 2017



The Transmitter

► The analog waveform corresponding to the bit b[i] can be written as a time-shifted version of an elementary pulse g(t)



- T_b is the information bit interval, while T is the pulse duration
- For now we assume that $T \leq T_b$, i.e., the pulses do not overlap
- We can now represent the transmit sequence s(t) as follows

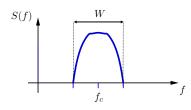
$$s(t) = b[0]g(t) + b[1]g(t - T_b) + b[2]g(t - 2T_b) + \cdots$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

What bandwidth is required?

▶ The bandwidth *W* of the transmit signal is a valuable resource



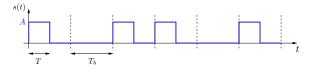
- For typical pulses g(t) the bandwidth W is proportional to $\frac{1}{T}$
- More details about bandwidth follow next week
- A challenging goal is to achieve a large bandwidth efficiency

$$\rho = \frac{R_b}{W} \left[\frac{\mathrm{b}/\mathrm{s}}{\mathrm{Hz}} \right]$$

Question: What happens when the pulse duration gets small?

What data rate can we achieve?

• We could also choose a shorter pulse, with $T < T_b$



An important parameter is the information bit rate

$$R_b=rac{B}{ au}~[ext{bps}]$$
 (bits per second) ,

if the source produces *B* information bits during τ seconds

We can write

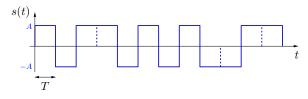
 $T_b = \frac{1}{R_b}$

Question: What happens with R_b if T_b is larger than T?


```
Michael Lentmaier, Fall 2017
```

Digital Communications: Week 1, Lecture 1

- In our example we only send a signal when b[i] = 1
 This modulation type is called on-off signaling
- ▶ Instead we could send a pulse with amplitude -A for b[i] = 0:

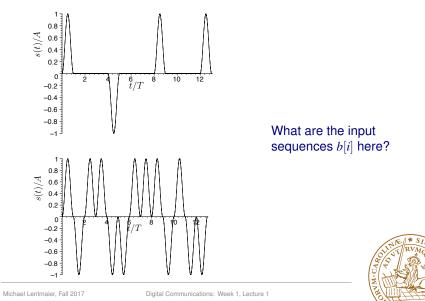


This modulation type is called antipodal signaling

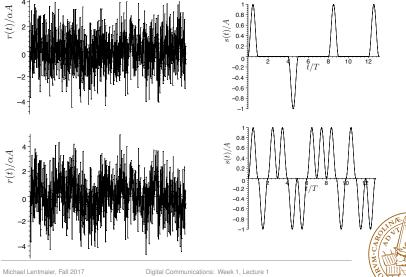
• We could also choose a different pulse shape g(t)

In this chapter: different modulation types and their properties

Another pulse example (\rightarrow p. 10)

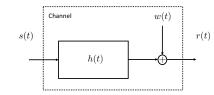


Example: noisy signal at the receiver (p. 13)



The Channel

The channel is often modeled as time-invariant filter with noise



- h(t) is the channel impulse response and w(t) the additive noise
- ► The received signal becomes

$$r(t) = s(t) * h(t) + w(t) = \int_{-\infty}^{\infty} h(\tau) s(t-\tau) d\tau + w(t)$$

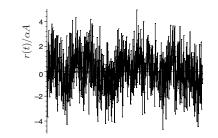
For now we assume the simple case (α : attenuation)

$$h(t) = \alpha \,\delta(t) \qquad \Rightarrow r(t) = \alpha \,s(t) + w(t)$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

The Receiver



- Due to the attenuation α during transmission, the noise w(t) has a strong impact on the received signal r(t)
- A well designed receiver can still detect the symbols correctly! In this example, only 1 of 10^5 bits will be wrong in average
- ▶ We will learn about the receiver and its performance later, in Chapters 4 and 5

Bit Errors

- The bit error probability is an important measure of communication performance
- It is defined as the average number of information bit errors per detected information bit

$$P_b = \frac{E\{B_{err}\}}{B}$$

Example:

- Assume a bit rate of 1 Mpbs and that 10 bit errors occur per hour on the average. What is the bit error probability?
- The total number of bits in an hour is

$$B = 1\,000\,000 \cdot 60 \cdot 60 = 3.6 \cdot 10^9$$

This gives

$$P_b = \frac{10}{R} = 2.78 \cdot 10^{-9}$$

 \Rightarrow Computer simulations become very time consuming!

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

M-ary signaling

Example: $k = 2, M = 2^2 = 4$

The binary sequence

is mapped by

$$m[i] = \sum_{n=1}^{k} b_n[i] \ 2^{n-1} = b_1[i] + b_2[i] \cdot 2$$

to M = 4 signal alternatives

$$\begin{aligned} b[i] &= 00 \leftrightarrow m[i] = 0 \leftrightarrow s_0(t) \\ b[i] &= 01 \leftrightarrow m[i] = 2 \leftrightarrow s_2(t) \end{aligned} \qquad b[i] &= 10 \leftrightarrow m[i] = 1 \leftrightarrow s_1(t) \\ b[i] &= 11 \leftrightarrow m[i] = 3 \leftrightarrow s_3(t) \end{aligned}$$

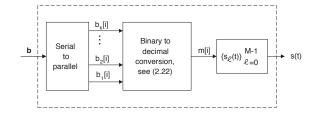
The message sequence becomes

$$m[i] = 1 \quad 3 \quad 2 \quad 2 \quad 0 \quad 3$$

With k = 14 there are M = 16384 signal alternatives

Increasing the message alphabet

- Up to this point we have considered binary signaling only
- Final Each bit b[i] was mapped to one of two signals $s_0(t)$ or $s_1(t)$
- ► More generally, we can combine k bits b₁[i], b₂[i],...b_k[i] to a single message m[i], which then is mapped to a signal s_ℓ(t)



► In case of *M*-ary signaling, one of *M* = 2^k messages *m*[*i*] is transmitted by its corresponding signal alternative

 $s_{\ell}(t) \in \{s_0(t), s_1(t), \dots, s_{M-1}(t)\}$

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

Symbol rate versus bit rate

 Since k information bits are transmitted with each symbol, the symbol interval (symbol time) becomes

 $T_s = k T_b$

Accordingly, the symbol rate (signaling rate) is given by

$$R_s = \frac{1}{T_s} \left[\frac{\text{symbols}}{\text{s}} \right] = \frac{R_b}{k}$$

▶ When the message equals m[i] = j then $s_j(t - iT_s)$ is sent

$$s(t) = s_{m[0]}(t) + s_{m[1]}(t - T_s) + s_{m[2]}(t - 2T_s) + \cdots$$

How does *k* affect the bandwidth efficiency ρ ?

Remark: Be careful with the different definitions of time: *t*: time variable *T*: pulse duration T_b : bit time T_s : symbol time

Signal energy and power

• The symbol energy E_{ℓ} of a signal alternative $s_{\ell}(t)$ is given by

$$E_{\ell} = \int_0^{T_s} s_{\ell}^2(t) dt < \infty, \quad \ell = 0, 1, \dots, M-1$$

An important system parameter is the average symbol energy

$$\overline{E}_s = \sum_{\ell=0}^{M-1} P_\ell E_\ell$$

and the average signal energy per information bit

$$\overline{E}_b = \frac{\overline{E}_s}{k}$$

The average signal power is then given by

$$\overline{P} = R_s \overline{E}_s = \frac{R_b}{k} \cdot k \overline{E}_b = R_b \overline{E}_b$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

How well can we distinguish two signals?

► The squared Euclidean distance between two signals *s_i*(*t*) and *s_j*(*t*) is defined as

$$D_{i,j}^{2} = \int_{0}^{T_{s}} (s_{i}(t) - s_{j}(t))^{2} dt$$

= $\int_{0}^{T_{s}} s_{i}^{2}(t) + s_{j}^{2}(t) - 2s_{i}(t)s_{j}(t) dt$
= $E_{i} + E_{j} - 2\int_{0}^{T_{s}} s_{i}(t)s_{j}(t) dt$

► Two signals are antipodal if

$$s_i(t) = -s_j(t)$$
, $0 \le tT_s$

► Two signals are orthogonal if

$$\int_{0}^{T_s} s_i(t) s_j(t) \, dt = 0$$

Antipodal signals have larger Euclidean distance

Signal energy and power

The attenuation α and the noise w(t) determine the quality of a communication link
r(t) = αs(t) + w(t)

Example:

If a transmitted signal s(t) has energy \overline{E}_b , how much energy \mathcal{E}_b is then in the received signal $z(t) = \alpha \cdot s(t)$ if $\alpha = 0.001$?

• Using
$$z^2(t) = \alpha^2 s^2(t)$$
 we obtain

$$\overline{P}_z = \alpha^2 \overline{P} = \alpha^2 R_b \overline{E}_b$$

and
$$\mathcal{E}_b = rac{\overline{P}_z}{R_b} = \alpha^2 rac{\overline{P}}{R_b} = \alpha^2 \overline{E}_b$$

• If $\alpha = 0.001$ then the power is reduced by a factor 10^{-6}

This will increase the bit error probability!

Michael Lentmaier, Fall 2017

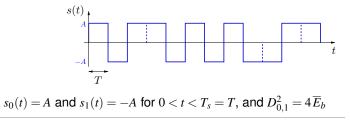
Digital Communications: Week 1, Lecture 1

Euclidean distance example M = 2

Case 1: on-off signaling

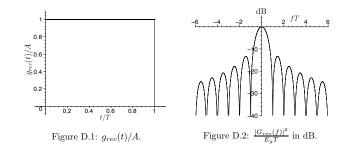
 $s_0(t) = A$ and $s_1(t) = 0$ for $0 < t < T_s = T$, which gives $D_{0,1}^2 = 2\overline{E}_b$ Observe: on-off signaling is orthogonal

Case 2: antipodal signaling



Michael Lentmaier, Fall 2017

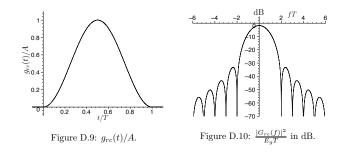
Examples of pulse shapes: Appendix D



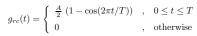
1. The rectangular pulse:

$$g_{rec}(t) = \begin{cases} A & , \quad 0 \le t \le T \\ 0 & , \quad \text{otherwise} \end{cases}$$
(D.1)
$$E_g = \int_0^T g_{rec}^2(t) dt = \int_{-\infty}^\infty |G_{rec}(f)|^2 df = A^2 T$$
(D.2)

Examples of pulse shapes: Appendix D



5. The time raised cosine pulse:



$$E_g = 3A^2T/8$$

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1

Michael Lentmaier, Fall 2017

Digital Communications: Week 1, Lecture 1