Problems Week 7

7.1 We want to transmit the binary sequence

$$
\text { b = } 1100100111
$$

with bandpass 4-ary PAM signaling, using a rectangular pulse $g_{\text {rec }}(t)$ with amplitude 1 and duration $T=T_{s}$. Consider the following mapping from bits to the amplitudes $A_{0}=-3, A_{1}=-1, A_{2}=+1$, and $A_{3}=+3$:

$$
00 \rightarrow A_{0}, \quad 10 \rightarrow A_{1}, \quad 11 \rightarrow A_{2}, \quad 01 \rightarrow A_{3} .
$$

a. Draw the baseband transmit signal $x_{I}(t)$.
b. Assume a homodyne receiver with phase error $\phi_{\text {err }}(t)=-67.5^{\circ}$ (i.e., $\left.-3 / 8 \pi\right)$ and $A=2$ for an ideal noise-free channel, i.e., $y(t)=x_{I}(t) \cos \left(2 \pi f_{c} t\right)$.
Draw the inphase and quadrature component signals $u_{I}(t)$ and $u_{Q}(t)$ in the interval $0 \leq t \leq 2 T_{s}$.
c. Let us now see the benefit of coherent reception. In the interval $0 \leq t \leq$ $2 T_{s}$, draw the three signals $u_{I}(t) \cos \left(\phi_{\text {err }}(t)\right), u_{Q}(t) \sin \left(\phi_{\text {err }}(t)\right)$, and $\hat{u}_{I}(t)=$ $u_{I}(t) \cos \left(\phi_{e r r}(t)\right)-u_{Q}(t) \sin \left(\phi_{e r r}(t)\right)$.
7.2 Consider the same scenario as in Problem 7.1, but with 4-ary QAM signaling using amplitudes $A_{0}=-1, A_{1}=+1, B_{0}=-1$, and $B_{1}=+1$ with the mapping:

$$
00 \rightarrow A_{0}, B_{0}, \quad 10 \rightarrow A_{1}, B_{0}, \quad 11 \rightarrow A_{1}, B_{1}, \quad 01 \rightarrow A_{0}, B_{1}
$$

a. Draw the baseband transmit signals $x_{I}(t)$ and $x_{Q}(t)$.
b. The homodyne receiver with phase error $\phi_{e r r}(t)=-67.5^{\circ}$ (i.e., $\left.-3 / 8 \pi\right)$ and $A=2$ sees now the input signal $y(t)=x_{I}(t) \cos \left(2 \pi f_{c} t\right)-x_{Q}(t) \sin \left(2 \pi f_{c} t\right)$.
Draw the inphase and quadrature component signals $u_{I}(t)$ and $u_{Q}(t)$ in the interval $0 \leq t \leq 2 T_{s}$.
c. Is it possible to see the original data in $u_{I}(t)$ and $u_{Q}(t)$?
7.3 Assume again $y(t)=x_{I}(t) \cos \left(2 \pi f_{c} t\right)-x_{Q}(t) \sin \left(2 \pi f_{c} t\right)$ at the input of a homodyne receiver.
a. Use equations (3.171) and (3.172) to compute the signal

$$
\hat{u}_{I}(t)=u_{I}(t) \cos \left(\phi_{e r r}(t)\right)-u_{Q}(t) \sin \left(\phi_{e r r}(t)\right) .
$$

What can we conclude?
b. (Optional) Can we recover the signal $u_{Q}(t)$ in a similar way?
7.4 For an ideal channel without noise the baseband signal produced by a homodyne receiver can be written as

$$
\tilde{u}(t)=\frac{\tilde{x}(t)}{2} A \cdot e^{-j \phi_{e r r}(t)}=u_{I}(t)+j u_{Q}(t),
$$

where

$$
\tilde{x}(t)=x_{I}(t)+j x_{Q}(t) .
$$

Show that this expression is equivalent to equations (3.171) and (3.172).
7.5 Let us now describe the signals in Problem 7.2 using complex baseband notation

$$
\tilde{x}(t)=x_{I}(t)+j x_{Q}(t)=\sum_{n=0}^{4} \tilde{A}_{m[n]} g\left(t-n T_{s}\right)
$$

a. Determine the sequence $\tilde{A}_{m[n]}$.
b. Draw the values $\tilde{A}_{m[n]}$ as points in the complex plane and label each point with the corresponding input bits.
c. The sequence is transmitted over a channel with $\tilde{h}(t)=2 \tilde{\alpha} \delta(t)$ and additive noise $\tilde{w}(t)$, where $\tilde{a}=0.001 e^{-j \phi_{\alpha}}$. At the receiver the $\operatorname{signal}_{\tilde{C}} \tilde{u}(t)$ is matchfiltered, sampled and multiplied with a scaling coefficient \tilde{C}, resulting in the decision variable

$$
\tilde{\xi}_{m[n]}=\tilde{C}\left(\tilde{A}_{m[n]} \tilde{\alpha} e^{-j \phi_{e r r}, n} \frac{A E_{g}}{2}+\tilde{\mathcal{N}}_{n}\right)
$$

where $\tilde{\mathcal{N}}_{n}$ denotes the contribution of noise at the output of the matched filter. The coefficient \tilde{C} is chosen such that $\tilde{\xi}_{m[n]}=\tilde{A}_{m[n]}$ for $\tilde{\mathcal{N}}_{n}=0$. Determine \tilde{C}.
d. Assume now that another sequence \mathbf{b} is transmitted under the same conditions. The decision variables computed by the receiver are
$\tilde{\xi}_{m[n]}=(0.5+0.5 j),(-1.5+0.5 j),(1.5+1.5 j),(-0.5+0.5 j),(-1.5-0.5 j)$
Draw the values $\tilde{\xi}_{m[n]}$ as points in the complex plane, together with the possible ideal values $\tilde{A}_{m[n]}$. For a minimum Euclidean distance receiver, determine the estimated sequences $\tilde{A}_{m[n]}$ and $\hat{\mathbf{b}}$.

