
Lab3: Machine Language and
Assembly Programming

Lund University / Electrical and Information Technology / 1

Goal

•  Learn how instructions are executed

•  Learn how registers are used

•  Write subroutines in assembly language

•  Learn how to pass and return arguments from subroutines

•  Learn how the stack is used

Lund University / Electrical and Information Technology / 2

Programmers vs. computers

•  Programmers can write programs in a high-level
programming language, or assembly language

•  Computers can only execute programs written in their
own native language (machine code)

Lund University / Electrical and Information Technology / 3

Programming
High-level language (we don’t need to know the architecture)

Machine language (native to
the architecture)

Assembly language (we need to know the architecture)

Lund University / Electrical and Information Technology / 4

Example

•  a=b+c;	
1.  Load variable b from memory into register1	
2.  Load variable c from memory into register2	
3.  Perform the addition register1+register2	and store

the result in register3	
4.  Store register3 to the memory address of variable a

•  Each step translates into one machine instruction

Lund University / Electrical and Information Technology / 5

Machine Language

•  Processor can only execute machine instructions
•  The instructions reside in memory along with data
•  Machine instruction is a sequence of bits

•  There is a set of machine instructions that are supported by
a given computer architecture (Instruction Set)

00001101010111101110

Opcode Op2 Op1 Op3

Lund University / Electrical and Information Technology / 6

Maskininstruktioner

•  Definitioner:
–  Vad ska göras (operationskod)?
–  Vem är inblandad (source operander)?
–  Vart ska resultatet (destination operand)?
–  Hur fortsätta efter instruktionen?

Lectures

Lund University / Electrical and Information Technology / 7

Maskininstruktioner

•  Att bestämma:
–  Typ av operander och operationer
–  Antal adresser och adresseringsformat
–  Registeraccess
–  Instruktionsformat

•  Fixed eller flexibelt

Lectures

Lund University / Electrical and Information Technology / 8

Inside the MicroBlaze processor

•  Thirty two 32-bit general purpose registers, r0-r31	
•  r0 is a read-only register containing the value 0	
•  A set of special purpose registers

–  rpc, Program Counter
•  keeps the address of the instruction being executed
•  special purpose register 0	
•  can be read with an MFS instruction

–  rmsr, Machine Status Register
•  contains control and status bits for the processor
•  special purpose register 1	
•  can be accessed with both MFS and MTS instructions

Lund University / Electrical and Information Technology / 9

Program Counter (rpc)

•  Contains the memory address of the instruction that is to be
fetched and executed by the processor

•  After the execution of the current instruction, this register is
updated to point to the memory address of the next
instruction that should be fetched and executed

0x640

Address Contents
0x638

0x63C

0x640 0x10330000

0x648

0x64C

0x650

0x654

0x658

MicroBlaze processor
Memory

rpc
Machine

instruction

Lund University / Electrical and Information Technology / 10

Program Counter (rpc)

•  If the current instruction does not explicitly modify rpc, after
execution, the rpc is updated to point to the successive
memory address (the yellow arrow)

•  If the current instruction explicitly modifies rpc, after execution,
the rpc points to the new value assigned to it (blue arrow)

0x640

Address Contents
0x638

0x63C

0x640 0x10330000

0x644

0x648

0x64C

0x650

0x654

MicroBlaze processor
Memory

rpc
Machine

instruction

Lund University / Electrical and Information Technology / 11

MicroBlaze machine instructions

•  Fixed size (all instructions have the same size)
•  Operands are provided through general purpose registers or

immediate values that are encoded in the instruction itself
•  Two instruction formats

•  Opcode- operation code (encoded with 6 bits)
•  Rd- destination register (encoded with 5 bits)
•  Ra, Rb- source registers (each encoded with 5 bits)
•  Immediate- 16bit value (signed extended to 32 bits unless an

IMM instruction is used before)

Type A Opcode Rd Ra Rb func

Type B Opcode Rd Ra Immediate

Lund University / Electrical and Information Technology / 12

Type A instruction- Example

•  Logical AND
–  Syntax:

 AND		Rd,	Ra,	Rb	
–  Description:

 	Rd	=	Ra	&	Rb
–  Machine code

 100001 Rd4-Rd0 Ra4-Ra0 Rb4-Rb0 00000000000
–  Machine code example:

 100001 01010 01010 01110 00000000000
 R10	=	R10	&	R14	

Lund University / Electrical and Information Technology / 13

Type B Instruction - Example

•  Logical AND
–  Syntax:

 ANDI		Rd,	Ra,	Imm	
–  Description:

 	Rd	=	Ra	&	signExtend32(Imm)
–  Machine code

 101001 Rd4-Rd0 Ra4-Ra0 Imm15-Imm0
–  Machine code example:

 101001 01010 01010 1111000000000000
	
R10	=	R10	&	0B11111111111111111111000000000000	

Can be overwritten by a preceding IMM instruction

Lund University / Electrical and Information Technology / 14

MicroBlaze Instruction Set

•  Arithmetic Instructions
•  Logic Instructions
•  Branch Instructions
•  Memory Access Instructions
•  Other

Lund University / Electrical and Information Technology / 15

Type A
ADD			Rd,	Ra,	Rb	
add	

Rd=Ra+Rb, Carry flag affected

ADDK		Rd,	Ra,	Rb	
add	and	keep	carry	

Rd=Ra+Rb, Carry flag not affected

RSUB		Rd,	Ra,	Rb	
reverse	subtract	

Rd=Rb-Ra, Carry flag affected

Arithmetic instructions – Type A

Lund University / Electrical and Information Technology / 16

Type B
ADDI			Rd,	Ra,	Imm	
add	immediate	

Rd=Ra+signExtend32(Imm)**	

ADDIK		Rd,	Ra,	Imm	
add	immediate	and	keep	carry	

Rd=Ra+signExtend32(Imm)**	

RSUBIK	Rd,	Ra,	Imm	
reverse	subtract	with	immediate	

Rd=signExtend32(Imm)**-Ra	

SRA				Rd,	Ra	
arithmetic	shift	right	

Rd=(Ra>>1)	

Arithmetic instructions – Type B

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction which overwrites the sign extension

Lund University / Electrical and Information Technology / 17

Logic instructions – Type A

Type A
OR			Rd,	Ra,	Rb	
logical	or	

Rd=Ra	|	Rb

AND		Rd,	Ra,	Rb	
logical	add	

Rd=Ra	&	Rb	

XOR		Rd,	Ra,	Rb	
logical	xor	

Rd=Rb	^	Ra	

ANDN	Rd,	Ra,	Rb	
logical	and	not	

Rd=Ra	&	(~Rb)	

Lund University / Electrical and Information Technology / 18

Logic instructions – Type B

Type B
ORI			Rd,	Ra,	Imm	
logical	OR	with	immediate	

Rd=Ra	|	signExtend32(Imm)

ANDI		Rd,	Ra,	Imm	
logical	AND	with	immediate	

Rd=Ra	&	signExtend32(Imm)

XORI		Rd,	Ra,	Imm	
logical	XOR	with	immediate	

Rd=Ra	^	signExtend32(Imm)	

ANDNI	Rd,	Ra,	Imm	
logical	AND	NOT	with	immediate	

Rd=Ra	&	(~signExtend32(Imm))	

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction which overwrites the sign extension

Lund University / Electrical and Information Technology / 19

Branch Instructions- Unconditional

Type B
BRID			Imm	
branch	immediate	with	delay	

PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

BRLID		Rd,	Imm	
branch	and	link	immediate	
with	delay	(function	call)	

Rd=PC	
PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

RTSD			Ra,	Imm	
return	from	subroutine	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	

RTID			Ra,	Imm	
return	from	interrupt	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	
set	interrupt	enable	in	MSR	

Modify the Program Counter (PC) register

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction which overwrites the sign extension

Lund University / Electrical and Information Technology / 20

Branch Instructions- Unconditional

Type B
BRID			Imm	
branch	immediate	with	delay	

PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

BRLID		Rd,	Imm	
branch	and	link	immediate	
with	delay	(function	call)	

Rd=PC	
PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

RTSD			Ra,	Imm	
return	from	subroutine	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	

RTID			Ra,	Imm	
return	from	interrupt	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	
set	interrupt	enable	in	MSR	

Modify the Program Counter (PC) register

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction which overwrites the sign extension

Call a function

Lund University / Electrical and Information Technology / 21

Branch Instructions- Unconditional

Type B
BRID			Imm	
branch	immediate	with	delay	

PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

BRLID		Rd,	Imm	
branch	and	link	immediate	
with	delay	(function	call)	

Rd=PC	
PC=PC+signExtend32(Imm)	
allow	delay	slot	execution

RTSD			Ra,	Imm	
return	from	subroutine	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	

RTID			Ra,	Imm	
return	from	interrupt	

PC=Ra+signExtend32(Imm)	
allow	delay	slot	execution	
set	interrupt	enable	in	MSR	

Modify the Program Counter (PC) register

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction which overwrites the sign extension

Return from a
function

Lund University / Electrical and Information Technology / 22

Branch Instructions- Conditional (1)

Type B
BEQI		Ra,	Imm	
branch	if	equal	

if	Ra==0
PC=PC+signExtend32(Imm)	

BNEI		Ra,	Imm	
branch	if	not	equal	

if	Ra!=0
PC=PC+signExtend32(Imm)	

Modify the Program Counter (PC) register if a condition is satisfied

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction
•  Branch instructions that allow execution of the instruction in the

branch delay slot are available, BEQID and BNEID	

Lund University / Electrical and Information Technology / 23

Branch Instructions- Conditional (2)

Type B
BLTI		Ra,	Imm	
branch	if	lower	than	

if	Ra<0
PC=PC+signExtend32(Imm)	

BLEI	Ra,	Imm	
branch	if	lower	equal	than	

if	Ra<=0	
PC=PC+signExtend32(Imm)	

BGTI	Ra,	Imm	
branch	if	greater	than	

if	Ra>0	
PC=PC+signExtend32(Imm)	

BGEI	Ra,	Imm	
branch	if	greater	equal	than	

if	Ra>=0	
PC=PC+signExtend32(Imm)	

Modify the Program Counter (PC) register if a condition is satisfied

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction
•  Branch instructions that allow execution of the instruction in the

branch delay slot are available (D is appended to the mnemonic)		

Lund University / Electrical and Information Technology / 24

Allow/Disallow Branch Delay Slot Execution

					addi	r1,r0,10
					bgti	r1,done	
					addi	r1,r1,-1	
					add		r2,r2,r0	
done:add		r2,r1,r0

					addi	r1,r0,10
					bgtid	r1,done	
					addi	r1,r1,-1	
					add		r2,r2,r0	
done:add		r2,r1,r0

r2=10 r2=9

Allowing branch delay slot exeuction is usefull in pipeling
(see Lecture on pipelining)

r1=r0+10=10	

r2=r0+r1=r1	

Disallow Allow

Lund University / Electrical and Information Technology / 26

Memory Access Instructions

Type A
LW			Rd,	Ra,	Rb	
load	word	

Address=Ra+Rb	
Rd=*Address

Type B
LWI		Rd,	Ra,	Imm	
load	word	immediate	

Address=Ra+signExtend32(Imm)	
Rd=*Address

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction

Processor reads from a given memory address

Lund University / Electrical and Information Technology / 27

Memory Access Instructions

Type A
SW			Rd,	Ra,	Rb	
store	word	

Address=Ra+Rb	
*Address=Rd

Type B
SWI		Rd,	Ra,	Imm	
store	word	immediate	

Address=Ra+signExtend32(Imm)	
*Address=Rd

•  Imm field is a 16 bit value that is sign extend to 32 bits
•  To use 32 bit immediate value a Type B instruction can

be preceded by an IMM instruction

Processor writes to a given memory address

Lund University / Electrical and Information Technology / 28

Other Instructions

IMM			Imm	
immediate	

Overwrites	the	sign	extension	
to	32	bits	of	the	following	
Type	B	instruction.	The	Imm	
field	provides	the	16	upper	
bits	of	the	32	bit	immediate	
value	later	used	by	the	Type	B	
instruction

MFS		Rd,Sa	
move	from	special	purpose	
register	

Rd=Sa	
Sa-	special	purpose	register,	
source	operand

MTS		Sd,Ra	
move	to	special	purpose	
register	

Sd=Ra	
Sd-	special	purpose	register,	
destination	operand

NOP	
No	operation	

Lund University / Electrical and Information Technology / 29

IMM instruction- Example

IMM			0x5002	
ANDI	r10,r10,0xF000	(Type B instruction preceded by IMM)
ANDI	r10,r10,OXF000	(Type B instruction not preceded by IMM)
	
	r10=r10	&	0x5002F000	
	
	
	r10=r10	&	0xFFFFF000	
	

Imm field from the IMM instruction

Imm field from the ANDI instruction

Sign extension to 32 bits

Imm field from the ANDI instruction

Functions (subroutines)

#include	“memory_map.h”	
int	main(){	
			int	a,b,c,d,e;	
			a=*IO1_DATA;	
			b=*IO2_DATA;	
			c=*IO3_DATA;	
			d=*IO2_DATA;	

			e=func1(a,b,c,d);	

			return	0;	
}	

int	func1(int	a,b,c,d){	
			int	x,y,z;	

			x=mult(a+b,c+d);	

			z=x;	

			y=mult(a+c,b+d);	

			z=z+y;		
			return	z;	
}	

int	mult(int	a,b){	
			int	x;	
			x=a*b;	
			return	x;	
}	

leaf subroutine

Time line

1
2

3 4

5

6

1 2 3 4 5 6

caller callee caller callee

Lund University / Electrical and Information Technology / 31

Functions (subroutines)

•  Caller
–  Prepare input arguments and pass them to the callee
–  Provide a return address to the callee

•  Callee
–  Provide return values (outputs)
–  Ensure that the caller can seamlessly proceed, once

the callee returns to the caller

Lund University / Electrical and Information Technology / 32

Functions (subroutines) - problems

•  How to pass arguments to functions?
•  How to return values from functions?

•  FOLLOW A REGISTER USAGE CONVENTION
•  How to ensure that registers retain values across function calls?
•  Where to return after a function has been executed?
•  Where to store temporary local variables of a function?

•  USE THE STACK

Lund University / Electrical and Information Technology / 33

Register Usage Convention

•  Dedicated
–  dedicated usage

•  Volatile
–  Do not retain values across function calls
–  Store temporary results
–  Passing parameters/ Return values

•  Non-volatile
–  Must be saved across function calls
–  Saved by callee

Lund University / Electrical and Information Technology / 34

Register Usage Convention
Dedicated

r0	 Keeps value zero
r1	 Stack pointer
r14	 Return address for interrupts
r15	 Return address for subroutines
r18	 Assembler temporary

Volatile
r3-r4	 Return values/ Temporaries
r5-r10	 Passing parameters/Temporaries
r11-r12	 Temporaries

Non-volatile
r19-r31	 Saved across function calls

Lund University / Electrical and Information Technology / 35

Stack

•  Memory segment
•  Grows towards lower memory addresses
•  Access the stack through a stack pointer
•  Stack pointer points to the top of the stack
•  Two operations

–  PUSH an item on top of the stack
–  POP the top item from the stack

Memory
0x00
0x01
0x02
0x03
…
0xFFC
0xFFD
0xFFE
0xFFF Stack pointer

Lund University / Electrical and Information Technology / 36

Stack frame

•  Temporal storage for the function to do its own book-keeping
•  Items inside a stack frame include:

–  Return address
–  Local variables used by the function
–  Save registers that the function may modify, but the caller

function does not want changed
–  Input arguments to callee functions

Lund University / Electrical and Information Technology / 37

When a function is called…
•  Reserve space on the stack for the stack frame

–  Decrement the stack pointer
•  Store necessary information in the stack frame

–  Return address
–  Non-volatile registers

•  Store input arguments provided through registers, in the
caller’s stack frame

Time line

Func1(); Func2(); Func3();

Lund University / Electrical and Information Technology / 38

When a function returns…
•  Load necessary information from the stack frame and

restore registers
–  Return address
–  Non-volatile registers

•  Pop the stack frame from the stack
–  Increment the stack pointer

•  Return to the caller

Time line

Func1(); Func2(); Func3();

Lund University / Electrical and Information Technology / 40

•  How are items in the stack frame organized?

•  Stack pointer (register r1) points to the top of the latest
stack frame

Stack Frame Convention

Stack frame top Return address
Input arguments to callee function
Local variables

Stack frame bottom Saved registers

Lund University / Electrical and Information Technology / 41

Stack Frame – Return address

•  Stack frame always reserves space for a return address

•  If the function calls other functions, register r15 is stored in
the return address field of the stack frame

Lund University / Electrical and Information Technology / 42

Stack Frame – Input arguments

•  Present only in stack frames of functions which call other
functions that require input arguments

•  If present, this field reserves space for at least 6 Words, i.e.
for registers r5-r10

•  If the function calls a callee that needs more than 6
arguments, the first six arguments to the callee are
provided through registers r5-r10, while the rest of the
arguments will be stored in the input arguments field of the
stack frame

•  Input arguments field of a stack frame is accessed by the
callee function

Lund University / Electrical and Information Technology / 43

Stack Frame – Local Variables

•  Present only in stack frames of functions which contain
local variables

•  The size depends on the number of defined local variables

Lund University / Electrical and Information Technology / 44

Stack Frame – Saved registers

•  Present only if the function needs to use any of the
non-volatile registers r19-r31	

•  Values of the non-volatile registers r19-r31	are stored in
the saved register field of the stack frame

•  Before the function returns, values of the non-volatile
registers r19-r31	are restored from the stack frame

•  This way, a callee function ensures that the caller can
seamlessly proceed with its execution

Lund University / Electrical and Information Technology / 45

Stack Frame – Example
int	func1(){	
int	temp;	
temp=3;	
temp=func2(temp,temp+2);	
return	temp;	
}	
	int	func2(int	x,	int	y){	
int	temp1;	
temp1=x*y	
return	temp1;	
}	
	

Address of caller to func1	
Reserved for r5 	
Reserved for r6	
Reserved for r7	
Reserved for r8	
Reserved for r9	
Reserved for r10	

temp	

Address of func1	
temp1	

Stack frame of func1	

Stack frame of func2	

Lund University / Electrical and Information Technology / 46

Assembly program

.global	number_of_ones

.text

.ent	number_of_ones
number_of_ones:		add	r3,r0,r0
while: 	 	beqid	r5,	result

	 	nop
	 	andi	r4,r5,1
	 	add	r3,r3,r4
	 	sra	r5,r5
	 	brid	while
	 	nop

result:									rtsd	r15,	8
	 	nop

.end	number_of_ones

Assembly directives
Assembly instructions
Symbols (labels)

use labels for branch
instructions

Lund University / Electrical and Information Technology / 47

Assembly program

.global	number_of_ones

.text

.ent	number_of_ones
number_of_ones:	 	add	r3,r0,r0
while: 	 	beqid	r5,	result

	 	nop
	 	andi	r4,r5,1
	 	add	r3,r3,r4
	 	sra	r5,r5
	 	brid	while
	 	nop

result: 										rtsd	r15,	8
	 	nop

.end	number_of_ones

unsigned	int	number_of_ones(unsigned	int	x){	
unsigned	int	temp=0;//	temp	is	stored	in	r3
		while	(x!=0){	

	temp=temp+x&1;	
	x>>=1;	

		}	
		return	temp;	
}

Lund University / Electrical and Information Technology / 48

Disassembled program

0x6C0	 add	r3,r0,r0
0x6C4	 beqid	r5,	28
0x6C8	 or	r0,r0,r0
0x6CC	 andi	r4,r5,1
0x6D0	 add	r3,r3,r4
0x6D4	 sra	r5,r5
0x6D8	 brid	-20
0x6DC	 or	r0,r0,r0
0x6E0	 rtsd	r15,	8
0x6E4	 or	r0,r0,r0

.global	number_of_ones

.text

.ent	number_of_ones
number_of_ones:		add	r3,r0,r0
while: 	 	beqid	r5,	result

	 	nop
	 	andi	r4,r5,1
	 	add	r3,r3,r4
	 	sra	r5,r5
	 	brid	while
	 	nop

result:									rtsd	r15,	8
	 	nop

.end	number_of_ones

Lund University / Electrical and Information Technology / 49

Tips and tricks

•  Initialize a register with a known value
–  Example load register r5 with 150
 addi	r5,r0,150	

•  Shift to left
–  Example register r5 to be shifted one position to left
		add	r5,r5,r5	//	r5=r5*2==r5<<1	
–  How about shifting multiple positions to the left?

Lund University / Electrical and Information Technology / 50

Tips and tricks

•  IF statement

Note the condition is inverted

if	(x>0){	
				block_true	
				…	
}else{	
				block_false	
				…	
} 		
y=…	

	 	

								blei	r5,	false		
								block_true	
								…	
								bri	end_if	
false:		block_false	
								…	
end_if:	y=…	
					

		

	 	

Assume x is stored in r5	

Lund University / Electrical and Information Technology / 51

Tips and tricks

•  IF statement

Note the blocks are swapped

if	(x>0){	
				block_true	
				…	
}else{	
				block_false	
				…	
} 		
y=…	

	 	

								bgti	r5,	true	
								block_false	
								…	
								bri	end_if	
true:			block_true	
								…	
end_if:	y=…	
					

		

	 	

Assume x is stored in r5	

Lund University / Electrical and Information Technology / 52

Tips and tricks

•  WHILE loop

Note the condition is inverted

while	(x>0){	
				block	
				…	
}	
y=… 		

	 	

condition:			blei	r5,	while_end		
													block	
								 					…	
													bri	condition	
while_end:			y=…	

		

	 	

Assume x is stored in r5	

Lund University / Electrical and Information Technology / 53

Tips and tricks

•  Multiplication
–  Example r3 stores the product r5*r6	
								add	r3,r0,r0	
again:		beqi	r6,	done	
								add	r3,r3,r5	
								addi	r6,r6-1	
								bri	again	
done:			nop	

Lund University / Electrical and Information Technology / 54

