LUND
University

Lab2: I/O Handling

Goal

- Learn how to access different I/O devices
- Write programs that interact with I/O devices
- Write driver routines

Computer system

Computer System

Minnesmappad och isolerad I/O

Memory mapped vs. Isolated I/O

- Memory mapped
- Same address space shared among memory and I/O
- Same instructions used to access memory and I/O
- Isolated I/O
- Different address space for memory and I/O
- Different instructions
- More control signals

MicroBlaze
 Memory mapped I/O

I/O devices

- Contain a set of registers
- Status/Control registers
- Data registers

SWITCHES

- 16 switches are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register stores the state of the switches
- Input device

SWITCHES

SWITCHES

LEDS

- 16 LEDs are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register controls the state of the LEDs
- Output device

LEDS

LEDS

Seven segment display

- 7 input signals
- One signal controls the state of one segment

7SEGMENT DISPLAYS EEPEREPE

- Output device
- Contains 8 data registers
- Each data register is 32 bit wide
- One data register keeps the data to be displayed on one of the 8 seven segment displays

7SEGMENT DISPLAYS

EGPEGEEEE

7SEGMENT DISPLAYS

EGPEGEEEE

Driver routines

- Software interface to hardware devices
- Operating system can invoke driver routines
- Programmers can invoke driver routines without needing to know precise details of the hardware being used
Write driver routines for the 7SEGMENT DISPLAYS device

Pushbutton

- Produces a logic ' 1 ' when pressed
- Produces a logic '0' when released

PUSH BUTTONS

- 5 pushbuttons are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register stores the state of the pushbuttons
- Input device

PUSH BUTTONS

PUSH BUTTONS

CPU - I/O communication

- Programmed I/O
- CPU has to wait for completion of each I/O operation
- Interrupt-driven I/O
- CPU can execute other code during I/O operation

Programmed I/O

- Polling
- CPU repeatedly checks if the device I/O is ready
- Many clock cycles are wasted

Check if any of the pushbuttons are pressed or released

Bouncing

- Problem with the pushbuttons
- Tendency of any two metal contacts in an electronic device to generate multiple signals as the contacts close or open

Pressing a button

Debouncing

- Delays
- If the state has changed, read the state after some delay
- The delay is of order of milliseconds

