

## Lab2: I/O Handling

## Goal

- Learn how to access different I/O devices
- Write programs that interact with I/O devices
- Write driver routines



#### **Computer system**



Lund University / Electrical and Information Technology /



#### **Computer System**





### Minnesmappad och isolerad I/O





4

## Memory mapped vs. Isolated I/O

- Memory mapped
  - Same address space shared among memory and I/O
  - Same instructions used to access memory and I/O
- Isolated I/O
  - Different address space for memory and I/O
  - Different instructions
  - More control signals





## I/O devices

- Contain a set of registers
- Status/Control registers
- Data registers



## SWITCHES



- 16 switches are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register stores the state of the switches
- Input device



## SWITCHES



## SWITCHES



## 

- 16 LEDs are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register controls the state of the LEDs
- Output device



#### LEDS



#### LEDS



12

## Seven segment display

- 7 input signals
- One signal controls the state of one segment





## **7SEGMENT DISPLAYS**



- Output device
- Contains 8 data registers
- Each data register is 32bit wide
- One data register keeps the data to be displayed on one of the 8 seven segment displays



## **7SEGMENT DISPLAYS**





## **7SEGMENT DISPLAYS**





## **Driver routines**

- Software interface to hardware devices
- Operating system can invoke driver routines
- Programmers can invoke driver routines without needing to know precise details of the hardware being used

Write driver routines for the 7SEGMENT DISPLAYS device



### **Pushbutton**

- Produces a logic '1' when pressed
- Produces a logic '0' when released









- 5 pushbuttons are interfacing the microprocessor through an I/O module
- The I/O module has one control and one data register
- Both registers are 32bit wide
- Control register gives a bit level control for the data flow direction of each of the bits of the data registers
- Data register stores the state of the pushbuttons
- Input device



## **PUSH BUTTONS**



### **PUSH BUTTONS**



Lund University / Electrical and Information Technology /

## **CPU - I/O communication**

- Programmed I/O
  - CPU has to wait for completion of each I/O operation
- Interrupt-driven I/O
  - CPU can execute other code during I/O operation



## **Programmed I/O**

- Polling
  - CPU repeatedly checks if the device I/O is ready
  - Many clock cycles are wasted

Check if any of the pushbuttons are pressed or released



## Bouncing

- Problem with the pushbuttons
- Tendency of any two metal contacts in an electronic device to generate multiple signals as the contacts close or open



#### Pressing a button

## Debouncing

- Delays
- If the state has changed, read the state after some delay
- The delay is of order of milliseconds





# LUNDS universitet