Exercises:

Part I

1. Represent 305 with 10 bits
2. Represent -305 with 10 bits
3. Represent -197 with 9 bits
4. Represent 197 with 9 bits
5. Represent "0101010101" in hexadecimal
6. Represent "1100111101" in hexadecimal
7. Represent "11001100" as decimal (unsigned representation)
8. Represent "11001100" as decimal (signed representation)

Part II

1. Assume \boldsymbol{b} is a variable of size 4 bytes and is stored in a byte addressable memory at address 0xa80. If the processor's endianness is little-endian, and the processor writes the value 0xa155f0d3 in the variable \boldsymbol{b} which bytes will be written to each memory address.
2. Assume \boldsymbol{x} is a variable of type pointer that points to a single byte. Further, assume b is a variable of size 4 bytes and is stored at memory address 0xa80. Given that the processor uses big-endian, evaluate the new value of b after the following code is executed:

$$
\begin{aligned}
& b=0 \times 2 F 552 ; \\
& x=0 \times a 81 ; \\
& b=b+* x ;
\end{aligned}
$$

3. Given a variable \boldsymbol{b} which is assumed to have a value in the range [0..7], write the necessary statements in C to ensure that the bit at bit position \boldsymbol{b} in another variable \boldsymbol{c} is set to one.
4. Write a statement in C such that for a given variable b the bit at position 3 is set to 0 , the bit at position 5 is set to 1 , the bit at bit position 2 is inverted. Assume that the variable b is of size 1 byte.
