
Exercises:

Part I

1. Represent 305 with 10 bits

2. Represent -305 with 10 bits

3. Represent -197 with 9 bits

4. Represent 197 with 9 bits

5. Represent “0101010101” in hexadecimal

6. Represent “1100111101” in hexadecimal

7. Represent “11001100” as decimal (unsigned representation)

8. Represent “11001100” as decimal (signed representation)

Part II

1. Assume b is a variable of size 4 bytes and is stored in a byte

addressable memory at address 0xA80. If the processor’s endianness is

little-endian, and the processor writes the value 0xA155F0D3 in the

variable b which bytes will be written to each memory address.

2. Assume x is a variable of type pointer that points to a single byte.

Further, assume b is a variable of size 4 bytes and is stored at

memory address 0xA80. Given that the processor uses big-endian,

evaluate the new value of b after the following code is executed:

b=0x2F552;

x=0xA81;

b=b+*x;

3. Given a variable b which is assumed to have a value in the range

[0..7], write the necessary statements in C to ensure that the bit at

bit position b in another variable c is set to one.

4. Write a statement in C such that for a given variable b the bit at

position 3 is set to 0, the bit at position 5 is set to 1, the bit at

bit position 2 is inverted. Assume that the variable b is of size 1

byte.

Answers:

Part I

1. 305/2 = 152 1

152/2 = 76 0

 76/2 = 38 0

 38/2 = 19 0

 19/2 = 9 1

 9/2 = 4 1

 4/2 = 2 0

 2/2 = 1 0

 1/2 = 0 1

 0/2 = 0 0 (0100110001)

2. ~0100110001=1011001110

 + 1

 =1011001111 (-305)

3. -197=(-1)*28+X=-256+X  (1 _ _ _ _ _ _ _ _) X=59 with 8 bits

59/2 = 29 1

29/2 = 14 1

14/2 = 7 0

 7/2 = 3 1

 3/2 = 1 1

 1/2 = 0 1

 0/2 = 0 0

 0/2 = 0 0  (-197)= (100111011)

4. ~100111011=011000100

 + 1

 =011000101 (197)

5. 0101010101– unsigned 0001|0101|0101 0x155

0101010101– signed 0001|0011|0011 0x155

6. 1100111101– unsigned 0011|0011|1101 0x33D

1100111101– signed 1111|0011|1101 0xF3D

7. 11001100 1*27+1*26+0*25+0*24+1*23+1*22+0*21+0*20 = 204

8. 11001100(-1)*27+1*26+0*25+0*24+1*23+1*22+0*21+0*20= -52

Part II

1.

2. First, the value 0x2F552 needs to be extended to 32 bits, i.e.

b=0x0002F552. This variable will be stored in memory as

As x points to memory address 0xA81, the expression *x is evaluated

as 0x02 (see table above).

The new value of b is then

 0x0002F552

+ 0x00000002

 0x0002F554

3. c=(1<<b)|c;

4. b=((b & 0b11110111) | 0b00100000) ^ 0b00000100;

Address Value
0xA80 0xD3
0xA81 0xF0
0xA82 0x55
0xA83 0xA1

Address Value
0xA80 0x00
0xA81 0x02
0xA82 0xF5
0xA83 0x52

