Exercises:

Part I

1. Represent 305 with 10 bits
2. Represent -305 with 10 bits
3. Represent -197 with 9 bits
4. Represent 197 with 9 bits
5. Represent "0101010101" in hexadecimal
6. Represent "1100111101" in hexadecimal
7. Represent "11001100" as decimal (unsigned representation)
8. Represent "11001100" as decimal (signed representation)

Part II

1. Assume b is a variable of size 4 bytes and is stored in a byte addressable memory at address 0xA80. If the processor's endianness is little-endian, and the processor writes the value 0xA155F0D3 in the variable \boldsymbol{b} which bytes will be written to each memory address.
2. Assume \boldsymbol{x} is a variable of type pointer that points to a single byte. Further, assume b is a variable of size 4 bytes and is stored at memory address 0xA80. Given that the processor uses big-endian, evaluate the new value of b after the following code is executed:

$$
\begin{aligned}
& b=0 \times 2 F 552 ; \\
& x=0 \times A 81 ; \\
& b=b+{ }^{*} x ;
\end{aligned}
$$

3. Given a variable \boldsymbol{b} which is assumed to have a value in the range [0..7], write the necessary statements in C to ensure that the bit at bit position \boldsymbol{b} in another variable c is set to one.
4. Write a statement in C such that for a given variable b the bit at position 3 is set to 0 , the bit at position 5 is set to 1 , the bit at bit position 2 is inverted. Assume that the variable b is of size 1 byte.

Answers:
Part I

1. $305 / 2=152$ $152 / 2=76$
$76 / 2=380$
$38 / 2=190$
$19 / 2=91$
$9 / 2=41$
$4 / 2=20$
$2 / 2=10$
$1 / 2=0 \quad 1$
$0 / 2=0 \quad 0 \mid(0100110001)$
2. ~0100110001=1011001110

$$
\begin{align*}
& +\frac{1}{1011001111}
\end{align*}
$$

4. $\sim 100111011=011000100$

$$
\begin{equation*}
+\frac{1}{+011000101} \tag{197}
\end{equation*}
$$

5. 0101010101- unsigned 0001|0101|0101 $\rightarrow 0 \times 155$ 0101010101- signed $0001|0011| 0011 \rightarrow 0 \times 155$
6. 1100111101- unsigned 0011|0011|1101 \rightarrow 0x33D 1100111101- signed $1111|0011| 1101 \rightarrow 0 x F 3 D$
7. $11001100 \rightarrow 1 * 2^{7}+1 * 2^{6}+0 * 2^{5}+0 * 2^{4}+1 * 2^{3}+1^{*} 2^{2}+0 * 2^{1}+0 * 2^{\theta}=204$
8. $11001100 \rightarrow(-1) * 2^{7}+1 * 2^{6}+0^{*} 2^{5}+0 * 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+0^{*} 2^{\theta}=-52$

Part II
1.

Address	Value
0xA80	0xD3
0xA81	0xF0
0xA82	0x55
0xA83	0xA1

2. First, the value 0x2F552 needs to be extended to 32 bits, i.e. $\boldsymbol{b}=0 \times 0002 \mathrm{~F} 552$. This variable will be stored in memory as

Address	Value
$0 \times A 80$	0×00
$0 \times A 81$	0×02
$0 \times A 82$	$0 \times F 5$
$0 \times A 83$	0×52

As \boldsymbol{x} points to memory address 0xA81, the expression ${ }^{*} \boldsymbol{x}$ is evaluated as $0 x 02$ (see table above).
The new value of \boldsymbol{b} is then
0x0002F552
$+\underline{0 x 00000002}$
0x0002F554
3. $c=(1 \ll b) \mid c$;
4. $b=((b$ \& $0 b 11110111) \mid 0 b 00100000) ~ \wedge ~ 0 b 00000100 ;$

