
Namn:
Laborationen godkänd:

 January, 2017

Computer Organization 6 hp

I/O handling 	

Purpose
The purpose of this laboratory exercise is to demonstrate how to write programs
that interact with the different I/O devices available on the board. In particular, we
show how to use the eight seven-segment displays and the five pushbuttons.
Furthermore, we shall demonstrate a method, i.e. polling, that enables handling of
external events triggered by some of the input devices.

Seven-segment displays
Seven-segment displays are composed of seven different LED segments and are
used to display different patterns by lighting different segments. The common
usage of seven-segment displays is to display decimal (or sometimes hexadecimal)
digits by using the seven different LED segments that can be lit. One seven-
segment display requires seven input signals, where each signal is responsible for
one of the seven LED segments. Depending on the state of the signal, the
corresponding LED segment is turned on or off. An illustration of a seven-
segment display, along with its inputs (denoted with “a” to “g”), is depicted in
Figure 1.

Figure 1. A seven-segment display

Computer Organization, Lab Assignment 2 January, 2017

2

For example, in Figure 1, the input signal “a” controls the topmost horizontal
LED segment. When the signal “a” drives a logic “1” the LED segment is turned
on (lit up), otherwise the segment is turned off.

The Nexys 4 board is equipped with eight seven-segment displays. In the hardware
platform, the eight seven-segment displays available on the Nexys 4 board are
interfaced to the MicroBlaze microprocessor through one output device, i.e.
7SEGMENT DISPLAYS , that contains eight 32-bit memory mapped data
registers. Each seven-segment display on the board is controlled by one of the data
registers of the 7SEGMENT DISPLAYS device. An illustration of this device
is depicted in Figure 2.

Figure 2. The output device 7SEGMENT DISPLAYS

The data registers are mapped to continuous (consecutive) memory addresses.
Each data register keeps a value that is being displayed on the seven-segment
display connected to it. The value is 32 bits wide, and based on the values of each
of these bits different segments of the seven-segment display are turned on or off.

Assignment 1.

The purpose of this assignment is to identify which bit, in a given data register, is
connected to which of the seven LED segments of the seven-segment display
controlled by the given data register. To identify this relation, provided is a code
that you can execute. The code writes to the data register that controls the right-
most seven-segment display on the board. This data register is mapped to the
memory address “0x44A00000”. By observing the changes of the rightmost seven-
segment display on the board, as you step through the code, you can identify the
pattern.

Computer Organization, Lab Assignment 2 January, 2017

3

In the current project, open the “main.c” source file, comment the code and put a
note so that you can keep track to which assignment it belongs to. Repeat this step
before each assignment.
Copy the following code in the “main.c” source file.

Explain what this code does.
__
__
__
__

Build the project, and then debug the program. By stepping through the code,
complete the following drawing based on the changes that you observe on the
rightmost seven-segment display. For example, when the first value, i.e. value=1, is
written to the data register controlling the rightmost seven-segment display the
topmost horizontal segment is lit (marked with red in the drawing). This implies
that the least significant bit of the data register, i.e. Bit	 0, turns on or off the
topmost horizontal segment of the seven-segment display.

Bit	31	

Bit	30	

Bit	29	

Bit	28	

Bit	27	

Bit	26	

Bit	25	

Bit	24	

Bit	23	

Bit	22	

Bit	21	

Bit	20	

Bit	19	

Bit	18	

Bit	17	

Bit	16	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bit	15	

Bit	14	

Bit	13	

Bit	12	

Bit	11	

Bit	10	

Bit		9	

Bit		8	

Bit		7	

Bit		6	

Bit		5	

Bit		4	

Bit		3	

Bit		2	

Bit		1	

Bit		0	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

unsigned	int	*LED_1;	
unsigned	int	value;	
int	i;	
int	main(){	
	 LED_1=(unsigned	int	*)0x44A00000;	
	 while	(1==1){	
	 	 value=1;	
	 	 for	(i=1;i<32;i++){	
	 	 	 *LED_1=value;	
	 	 	 value=value<<1;	
	 	 }	
	 }	
}	

Computer Organization, Lab Assignment 2 January, 2017

4

Assignment 2.

The purpose of this assignment is to construct the patterns for each decimal digit.
Based on the drawing in Assignment 1, construct a read-only (const) array of
integers, where the elements of the array provide the codes for the corresponding
digit, i.e. the element at index “i” in the array provides the pattern that displays the
digit “i” on the seven-segment display. The template is provided bellow along with
the code to display the digit “0”.

Assignment 3.

The purpose of this assignment is to write a program that displays digits on the
seven-segment displays.
Since displaying a digit on a seven-segment display is a functionality that we might
need to exploit in other programs as well, it is better to design a function that later
can be invoked from the main program. Therefore, we design a function that takes
two inputs: (1) an index to a particular seven-segment display, and (2) a digit. The
advantage of having such a function is that we could easily call it from the main
program whenever we need to output a value on any of the seven-segment displays
program, without thinking of which code should be written into which register (the
function will take care of it). To index a particular seven-segment display, we use
the range 0-7, where index 0 refers to the rightmost seven-segment display and
index 7 refers to the leftmost seven-segment display.

For the designed system, the data registers controlling the eight seven-segment
displays available on the board are mapped to consecutive memory addresses. Since
the data registers are 32 bits wide (4 bytes), the difference between the addresses of
two neighboring displays is equal to 4 (one byte is stored at each memory address).
Utilizing the fact that the data registers controlling the displays are mapped to
consecutive memory address, it is sufficient to know the base memory address (the
address of the first data register) in order to obtain the memory address of the

const	unsigned	int	display_codes[]=	 {0b0111111,		//	“index	0”	
	 	 	 	 	 	 	0b_______,		//	“index	1”	
	 	 	 	 	 	 	0b_______,		//	“index	2”	

	0b_______,		//	“index	3”	
	0b_______,		//	“index	4”	
	0b_______,		//	“index	5”	
	0b_______,		//	“index	6”	
	0b_______,		//	“index	7”	
	0b_______,		//	“index	8”	
	0b_______};	//	“index	9”	

Computer Organization, Lab Assignment 2 January, 2017

5

other data registers. By having the base address, we obtain the addresses of the
other data registers by adding an offset to the base address. The base address can
be defined in a header file.

In the current project, create a new header file with the name “displays.h”. Copy
and insert the following line in the recently created header file, between the
“#define” and “#endif” directives.

#define	SEVEN_SEGMENT_DISPLAY_BASE	 0x44A00000	

The previous line defines the base address, which is as well the address of the data
register controlling the rightmost seven-segment display.

In C, a function needs be declared before it is used in the “main” function. A
common practice is to provide the declarations of the functions in header files,
while the definitions of the functions are provided in source files. Therefore, next
we shall add the declaration of the function, which we are about to design, in the
header file “displays.h”. Note that we shall use this header file to keep the
declarations for all functions that deal with the seven-segment displays.

In the header file “displays.h”, copy and insert the following line.

void	displayDigitAtIndex(unsigned	char	index,	unsigned	char	digit);	

The previous line declares the function “displayDigitAtIndex”. This function does
not provide any outputs, but has two inputs, i.e. index and digit, which are both of
type unsigned	char.

So far, in the project we only had one single source file, i.e. “main.c”, where the
“main” function was defined. However, one project may contain multiple source
files, where in different source files definitions of different functions are provided.
These different functions can be invoked from the “main” function. Note that in C,
the “main” function dictates the beginning of the program.

Following the common practice, we keep the definitions for all the functions
declared in the header file “displays.h” in a separate source file, i.e. “displays.c”.

Next, we provide the definition for the function “displayDigitAtIndex”. In the
current project, create a new source file with the name “displays.c”, and then copy
the following code:

Computer Organization, Lab Assignment 2 January, 2017

6

In the code that you copied, replace the commented section with the completed
definition of the array “display_codes”. The completed definition is the result of
Assignment 2.

Study the code. Explain what the code does.
__
__
__
__

To verify that the function “displayDigitAtIndex” is working properly, we write a
new main program. The main program invokes the “displayDigitAtIndex” function
and its purpose is to display the digits from 0 to 9 starting from the rightmost
display in a round robin fashion. As there are only eight displays and ten digits are
to be displayed, the rightmost displays shall be overwritten, i.e. the digit 8 will be
displayed on the display with index 0, and the digit 9 will be displayed on the
display with index 1.

Open the “main.c” source file, comment the code and then copy and insert the
following code.

Build the project and debug the code. Step through the code and verify that the
correct digits are displayed on the different displays. Note that in case of incorrect
representation of the digits, you will need to update the definition of the array
“display_codes”.

#include	"displays.h"	
/*		
*			COMMENT:							
*	 insert	the	completed	definition	of	the	array	“display_codes”	(Assignment	2)	
*/	
void	displayDigitAtIndex(unsigned	char	index,	unsigned	char	digit){	
			if	((index<8)&&(digit<10))	
					*((unsigned	int	*)	(SEVEN_SEGMENT_DISPLAY_BASE	+index*4))=display_codes[digit];	
}	

#include "displays.h"
unsigned char i;
int main(){

while (1==1){
 for (i=0;i<10;i++)
 displayDigitAtIndex(i%8,i);

}
}

Computer Organization, Lab Assignment 2 January, 2017

7

Assignment 4.

The purpose of this assignment is to design a function that displays an integer
number on the displays. The number is displayed such that its least significant digit
is visible on the rightmost seven-segment display. However, an integer number may
have more than 8 digits (more than the available number of displays). Therefore,
we shall also design an auxiliary function that counts the number of digits in a given
integer number.

The first step is to provide the declarations for these two functions. Copy the
following lines in the “displays.h” file.

unsigned	int	numberOfDigits(unsigned	int	x);	
void	displayNumber(unsigned	int	x);		

The previous two lines declare the functions “numberOfDigits” and “displayNumber”.
Both functions take a single input argument of type unsigned	 int. The function
“displayNumber” does not provide any outputs, while the function “numberOfDigits”
returns an output of type unsigned	int.

The next step is to provide the definitions for the previously declared functions.
The definitions are to be written in the “displays.c” source file. Copy the following
code in the “displays.c” file.

Study the codes of the two functions. Explain what each of the functions does.
__
__
__

unsigned int numberOfDigits(unsigned int x){
 unsigned int count=1;
 while (x/10>0){
 count++;
 x=x/10;
 }
 return count;
}

void displayNumber(unsigned int x){
 unsigned int index=0;
 if (numberOfDigits(x)<9)
 do {
 displayDigitAtIndex(index,x%10);
 index++;
 x=x/10;
 } while (x>0);
}

Computer Organization, Lab Assignment 2 January, 2017

8

What is going to be displayed on the displays if the function “displayNumber” is
invoked with an integer number that has at least 9 digits?____________________

Modify the “main” function such that you can verify the correctness of these two
functions. The new program should display few different numbers on the seven-
segment displays. Ensure that the numbers that are displayed don’t have the same
number of digits.

Open the “main.c” source file, comment its contents and write the modified code
following the template provided below.

Build the project and debug the code. Step through the code and observe the

changes. Use the Step Over button (F6) when you debug the program.

• What happens when displaying a number that has less digits than a number
that has been previously displayed? ________________________________

Assignment 5.

To ensure that each number is correctly displayed, it is important to reset the
displays before displaying a new number. Design a function that resets a given
display based on its index. Name this function “resetDisplayAtIndex”. This function
should have one input parameter, i.e. the index of the display that is to be reset.
Add the declaration of the function in the “displays.h” header file, and define the
function in the “displays.c” source file (for reference, see the previous examples).

#include "displays.h"
int main(){

while (1==1){
 /*
 * COMMENT:
 * display numbers here
 */

}
}

Computer Organization, Lab Assignment 2 January, 2017

9

Assignment 6.

Using the function “resetDisplayAtIndex”, create a function that resets all displays.
Name this function “resetDisplays”. This function should not have any input
parameters. Add the declaration of the function in the “displays.h” header file,
and define the function in the “displays.c” source file (for reference, see the
previous examples).

Assignment 7.

Write a main program that verifies that the functions you have designed in
Assignment 5 and 6 work properly. Don’t forget to comment the contents of the
“main.c” source file before you apply the changes.

Assignment 8.

Design a function with the name “displayNumberAtIndex” that takes two input
arguments, an index and a number, to display a number at a given index position.
The least significant digit of the number is displayed at the given index position.
If the number is too large and cannot be displayed at the given position, no action
should be taken.

Write a main program so that you can verify that the function works properly.
Don’t forget to comment the contents of the “main.c” source file before you apply
the changes.

Computer Organization, Lab Assignment 2 January, 2017

10

Pushbuttons

A pushbutton produces one output signal, i.e. a logic ‘0’ or a logic ‘1’, based on
whether the button is pressed or released. A pushbutton is illustrated in Figure. 3.

Figure. 3 A pushbutton

Five pushbuttons are available on the Nexys 4 board. In the hardware platform,
these five pushbuttons are interfaced to the MicroBlaze microprocessor through
one I/O device, i.e. PUSH BUTTONS . The PUSH BUTTONS device has one
control and one data register. Both these registers are 32-bits wide and are mapped
to known memory addresses. The control register is used to control the data flow
direction for each of the bits in the data register. The outputs of the pushbuttons
available on the Nexys 4 board are connected to the data register of the PUSH
BUTTONS device, as illustrated in Figure 4.

Figure 4. PUSH BUTTONS I/O device

Computer Organization, Lab Assignment 2 January, 2017

11

Assignment 9.

The purpose of this assignment is to identify to which particular bits in the data
register of the PUSH BUTTONS device are the five pushbuttons, available on
the Nexys 4 board, connected. For that purpose, provided is a code that you can
run on the hardware platform, and by monitoring the changes you can identify the
relation.

As mentioned earlier, the PUSH BUTTONS device has one control and one data
registers, each 32-bit wide, that are mapped to known memory addresses. For ease
of reference, we define pointers which point to the memory addresses of the
control and the data registers. These definitions are to be stored in a header file.
Create a new header file with the name “buttons.h”, and add the following
definitions:

#define	BUTTONS_DATA				(unsigned	int	*)	0x40000000	
#define	BUTTONS_CONTROL	(unsigned	int	*)	0x40000004	

The PUSH BUTTONS device has to be configured as an input device, i.e. the
data register should capture signals coming from the pushbuttons. This is done by
writing “1s” in the control register of the device. The data register of this device
keeps the current state of each of the buttons. Whenever a button is pressed, the
particular bit of the data register to which the button is mapped to is set to 1,
otherwise the bit is set to 0. Since there are five buttons, only five bits of the 32 bit
long register are affected by the state of the buttons. To identify which bits are
affected by each of the buttons, one can write a simple program that reads the data
register of the PUSH BUTTONS and stores this data in a local variable.

Open the “main.c” source file, comment its contents and type the following code:

The provided code, first configures the PUSH BUTTONS device as an input
device by writing all ‘1’s in its control register, which is mapped to memory address
“0x40000004”. Next, the program continuously reads the data register of the PUSH
BUTTONS device, mapped at memory address “0x40000000”, and stores this
information in the local variable “state”.

#include	"buttons.h"	
unsigned	int	state;	
int	main(){	
	 *BUTTONS_CONTROL=0xFFFFFFFF;	

while	(1==1){	
	 	 state=*BUTTONS_DATA;	

}	
}	

Computer Organization, Lab Assignment 2 January, 2017

12

Build the project and debug the program. Open the “Expression” view in the
debug environment, and check the contents of the variable “state”.

What is the value of the variable “state” when each of the buttons is pressed?
Write the values in binary format. Hint: Make sure that a pushbutton is pressed
when the debugger reads the data register.

UP ______________________________
DOWN ______________________________
RIGHT ______________________________
LEFT ______________________________
MIDDLE ______________________________

Assignment 10.

As you observed from Assignment 9, pressing a particular pushbutton writes a
logic ‘1’ at a specific bit position in the data register of the PUSH BUTTONS
device. By reading the data register of this device, a program can identify which
particular button has been pressed. Instead of memorizing the different binary
patterns for each of the pushbuttons, a more convenient way is to define labels.
The purpose of having these labels is to refer to them in the code instead of writing
the binary pattern. These labels can be stored in a header file.

Open the “buttons.h” header file, and insert the following lines.

#define UP 0b?????
#define DOWN 0b?????
#define MIDDLE 0b?????
#define LEFT 0b?????
#define RIGHT 0b?????

Complete the definitions, such that the binary patterns “0b?????” correspond to the
correct patterns for each of the buttons, which you already have identified in
Assignment 9.

Computer Organization, Lab Assignment 2 January, 2017

13

Polling

So far, we showed how to interact with input and output devices. However, in
many cases the communication with these devices is strictly defined and is usually
not as straight forward as just reading or writing to data registers. Polling refers to
periodically sampling the status of an external (input or output) device to determine
the need to service the device. Only when a device is ready, a program (the
processor or other programmable controller) can exchange data with the device. In
these labs, the I/O devices that are used are not very complex. Still, for illustrative
purposes we show the basic principle of polling. The polling principle can be used
to sample the state of the pushbuttons. The pushbuttons can provide trigger events
whenever they are pressed or released. To capture these trigger events one needs to
continuously sample the state of the pushbuttons.

Assignment 11.

In this assignment, we demonstrate the polling principle for the five pushbuttons
available on the Nexys 4 board.

If none of the buttons is pressed, then all bits in the data register of the PUSH
BUTTONS device are set to 0. This can be used as an indication that the device
does not have any valuable input, and thus the processor should wait until the
device has some data available. However, when a button is pressed, depending on
which button has been pressed different actions can be taken.

The goal of the assignment is to write a program that implements the following
algorithm:

1) When the program starts, a zero is displayed on the seven-segment displays.
2) If no buttons are pressed, no changes occur on the displays.
3) When the “up” button is pressed, the displayed value is incremented by one
4) When the “down” button is pressed, the value displayed is decremented by

one
5) Repeat steps 2-5

The following code is one implementation of the algorithm described earlier:

Computer Organization, Lab Assignment 2 January, 2017

14

Open the “main.c” source file, comment its contents, and copy and insert the
provided code. Build the project and run the program, by clicking the “Resume”

 button.

Push the “up” and the “down” buttons and observe the changes on the display.

Does the provided code work well in practice?____________________________

Why does the displayed value change much more rapidly than expected?
Hint: The MicroBlaze processor operates at 100MHz frequency
__
__
__

What happens when you press and hold the “down” button?_________________

What is the explanation for this phenomena?______________________________
__
__

Would similar thing happen if you press and hold the “up” button?____________
__
__
__

How can you solve the two problems above? _____________________________
__
__

#include	"buttons.h"	
#include	"displays.h"	
unsigned	int	counter;	
int	main(){	
	 *BUTTONS_CONTROL=0xFFFFFFFF;	

counter=0;	
while	(1==1){	
	 resetDisplays();	
	 displayNumber(counter);	
	 while	(*BUTTONS_DATA==0);	//	keep	reading	the	data	register		

	 	 if	(*BUTTONS_DATA==UP)	
	 	 	 counter++;	
	 	 if	(*BUTTONS_DATA==DOWN)	
	 	 	 counter--;	

}	
}	

Computer Organization, Lab Assignment 2 January, 2017

15

Assignment 12.

The purpose of this assignment is to show how to avoid the problems you have
encountered in Assignment 11.

To avoid the problems, we modify the algorithm described in Assignment 11 by
adding some more details. The modified algorithm is as follows:

1. When the program starts, a zero is displayed on the seven-segment displays.
2. If no buttons are pressed, no changes occur on the displays.
3. If a button is pressed, the data register of the input device is read and it is

stored in a local variable.
4. Depending on the value of this variable, the displayed value is incremented if

the “up” button is pressed or decremented if the “down” button is pressed.
5. Wait until a new button is pressed, or until the current button is released.
6. Repeat steps 2-6.

The following code implements the algorithm above.

Open the “main.c” source file, comment its contents and copy and insert the
provided code. Build the project and run the program.

Does the provided code work well in practice?____________________________

What do you observe?___

#include	"buttons.h"	
#include	"displays.h"	
unsigned	int	counter;	
unsigned	int	buttons_state;	
int	main(){	
	 *BUTTONS_CONTROL=0xFFFFFFFF;	

counter=0;	
while	(1==1){	
	 resetDisplays();	
	 displayNumber(counter);	
	 while	(*BUTTONS_DATA==0);	//	keep	reading	the	data	register		
	 buttons_state=*BUTTONS_DATA;	

	 	 if	(buttons_state==UP)	
	 	 	 counter++;	
	 	 if	(buttons_state==DOWN)	
	 	 	 counter--;	
	 	 while	(*BUTTONS_DATA==buttons_state);	

}	
}	

Computer Organization, Lab Assignment 2 January, 2017

16

Assignment 13.

As you observe, after implementing the algorithm in Assignment 12, in many cases
when you press and hold a button, the displayed value is incremented or
decremented only by one. However, sometimes it happens that when you press a
button the value is incremented/decremented by more than one. The reason for
this is a problem known as “bouncing”. Bouncing is the tendency of any two metal
contacts in an electronic device to generate multiple signals as the contacts close or
open. Thus, when a button is pressed, the value of the bit to which it is connected
oscillates between zero and one, before it finally stabilizes to one (when the bit is
set to one, it means that the particular button is pressed). Since in the while loops,
we read the data register with a very high frequency, this makes it possible to
capture the non-intended transitions of the bit rendering the event of pressing the
button once as multiple events. To avoid the problem of bouncing, we could add
some delays between two consecutive read operations on the data register. A
typical way to add some delay is by adding a for-loop that does not do anything
useful.

The modified code that takes the delay into account is provided below.

Open the “main.c” source file, comment its contents and copy and insert the
provided code. Build the project and run the program. Check whether this
implementation fixes the problem of bouncing.

#include	"buttons.h"	
#include	"displays.h"	
unsigned	int	counter;	
unsigned	int	buttons_state;	
unsigned	int	i;	
int	main(){	
	 *BUTTONS_CONTROL=0xFFFFFFFF;	

counter=0;	
while	(1==1){	
	 resetDisplays();	
	 displayNumber(counter);	
	 while	(*BUTTONS_DATA==0);	

for	(i=0;i<20000;i++);		
	 buttons_state=*BUTTONS_DATA;	

	 	 if	(buttons_state==UP)	
	 	 	 counter++;	
	 	 if	(buttons_state==DOWN)	
	 	 	 counter--;	
	 	 while	(*BUTTONS_DATA==buttons_state);	
	 	 for	(i=0;i<20000;i++);	

}	
}	

Computer Organization, Lab Assignment 2 January, 2017

17

Assignment 14.
Use the code from Assignment 13. Build the project and run the program.
Press and hold the right pushbutton, and then press the up or the down button.
Release the buttons. What happens with the counter?________________________
Press and hold the left pushbutton, and then press the up or the down button.
Release the buttons. What happens with the counter?_______________________
Press and hold the middle pushbutton, and then press the up or the down button.
Release the buttons. What happens with the counter?_______________________
Suggest a solution, such that the counter will be modified as long as either the up or
the down button is pressed, irrespective of the state of the other pushbuttons.
Modify the code and verify that it works as expected. Don’t forget to comment the
contents of the “main.c” source file before you apply the changes.

Assignment 15.
The code from the previous assignment does not take into account the range of
values that could be presented on the displays. Modify the code such that the
variable “counter” can only take values which are in the range that can be
displayed. Apply the changes, and verify that the program works as expected.
Don’t forget to comment the contents of the “main.c” source file before you apply
the changes.

Assignment 16.
In Assignments 11-15, the changes on the displays are only visible once any of the
pushbuttons is released. Modify the code such that the changes are visible once a
button is pressed. Apply the changes, build the project, and run the program so
that you can verify that it works as expected. Don’t forget to comment the contents
of the “main.c” source file before you apply the changes.

Assignment 17.
Similar to the previous assignments, write a program that reacts to the changes of
the states of the push-buttons. The “up” and the “down” buttons update the value
that should be displayed on the seven-segment displays, while the “left” and the
“right” buttons update the position at which the value should be displayed. The
“middle” button is used as a reset. The algorithm is summarized as follows:

1. When the program starts, the value zero is displayed on the seven-segment
display with index position zero (the right-most seven-segment display).

2. If the “up” button is pressed, irrespective of the state of the other buttons,
the displayed value is incremented by one, as long as the displayed value is
lower than the maximal value that can be displayed at the current index
position. If the value displayed at the current position is the maximal value
that can be displayed, then no action should be taken when the “up” button
is pressed.

Computer Organization, Lab Assignment 2 January, 2017

18

3. If the “down” button is pressed, irrespective of the state of the other
buttons, the value is decremented by one, as long as the displayed value is
larger than zero. If the displayed value is zero, no action should be taken
when the “down” button is pressed.

4. If the “middle” button is pressed, irrespective of the state of the other
buttons, the value zero is displayed at index position zero.

5. If the “right” button is pressed, irrespective of the state of the other buttons,
the displayed value is moved one index position to the right, as long as the
current index position is larger than zero. If the value is displayed at index
position zero, then no action should be taken when the “right” button is
pressed.

6. If the “left” button is pressed, the displayed value is moved one index
position to the left, as long as it is possible to display the value at this new
position. If the displayed value cannot be moved one index position to the
left, then no action should be taken if the “left” button is pressed.

7. Repeat steps 2-6.

Note: A button is pressed only if the current state of the button is “1”, but the
previous state has been “0”. Assume the following situation: the value “10” is
displayed at index position zero (the right-most seven-segment display) and a user
pushes the “up” button and holds it. This event would result in incrementing the
value by one, and thus, the value “11” should be displayed at index position zero.
Next, while the “up” button is pressed, the user pushes the “left” button. For this
event, the value “11” should be displayed at index position one. Note that even
though the current state of the “up” button is “1”, no action should be taken since
it is the same press event to which the program has already reacted.

