
Namn:
Laborationen godkänd:

 January, 2017

Computer Organization 6 hp

	

Introduction to the
lab environment

	

Purpose

The purpose of this laboratory exercise is to give an introduction to the lab
environment that will be used throughout the labs in the Computer Organization
course EITF70. One should get the knowledge on how to use the Xilinx SDK tool
to setup, debug and run application projects. Furthermore, one should get the
knowledge on how to write a simple application program in the high level
programming language C, understand the different data types and how data is stored
in memory.

The Lab Environment

Throughout the labs of this course we shall use the Xilinx SDK tool to create
different applications that will be executed on a specific hardware platform that is
implemented on an FPGA board. The application projects are to be written in the
high level programming language C. The applications are to be executed on a
hardware platform specifically tailored for the needs of this course. The hardware
platform is based on a 32-bit RISC (Reduced Instruction Set Computer) processor,
MicroBlaze. The MicroBlaze processor is a soft microprocessor core designed by
Xilinx. The MicroBlaze core can be used to design hardware that can be
implemented on a Xilinx FPGA (Field Programmable Gate Array) board. An FPGA
is an integrated circuit that contains an array of programmable logic blocks. By
programming the FPGA one can implement different hardware designs that are
specified using a hardware description language (HDL). In these labs, we shall use
the Nexys 4 FPGA board. Apart from the FPGA, this board contains a number of
ports and peripherals allowing it to host designs ranging from introductory
combinational circuits to powerful processors. Throughout the labs, we shall use
primarily the following peripherals available on the Nexys 4 board: the 16 switches,
the 16 LEDs, the eight seven-segment displays and the five pushbuttons. The Nexys
4 board, along with the peripherals discussed earlier, is illustrated in Figure 1.

Computer Organization, Lab Assignment 1

January, 2017

2

Figure 1. Nexys 4 board

16 switches

16 LEDs

8 seven-segment displays

5 pushbuttons

FPGA

Computer Organization, Lab Assignment 1

January, 2017

3

The Hardware Platform

The hardware platform is based on a MicroBlaze microprocessor. The processor is
connected to a number of I/O devices and a memory. The following I/O devices
are available:

- SWITCHES , a configurable I/O device interfacing the 16 switches
available on the Nexys 4 board

- LEDS , a configurable I/O device interfacing the 16 LEDs available on
the Nexys 4 board

- 7SEGMENT DISPLAYS , an output device interfacing the 8 seven-
segment displays available on the Nexys 4 board

- PUSH BUT TONS , a configurable I/O device interfacing the five
pushbuttons available on the Nexys 4board

- TIMER1 , a configurable timer/counter device that can generate
interrupts

- TIMER2 , a configurable timer/counter device that can generate
interrupts

- INTERRUPT CONTROLLER , used for combining multiple
interrupts that come from various devices, namely, the timers.

The memory stores the program that is to be executed by the MicroBlaze
microprocessor. Furthermore, all necessary data is stored in the memory. A block
representation of the hardware platform is given in Figure 2.

The MicroBlaze microprocessor operates at 100MHZ frequency.

Computer Organization, Lab Assignment 1

January, 2017

4

Figure 2. The hardware platform

Computer Organization, Lab Assignment 1

January, 2017

5

The Xilinx SDK

This part guides you through the process of setting up a new project using the Xilinx
SDK tool. It includes the different steps, namely, setting up the workspace, creating
a new project, setting up the target hardware platform, writing the first application,
programming the FPGA and running/debugging the application.

Setting up the workspace for Xilinx SDK

In the file explorer, create a folder with the name “EITF70” (or choose a different
name that does not contain any other characters except for digits and letters) in the
following location “C:\Users\user_name\”, where user_name is your login ID. All
projects that will be created during the labs of this course will be stored in this
folder, and it is referred to as a workspace. When you open Xilinx SDK, the
following window pops up:

Figure 3. Setting up the workspace

Click the “Browse” button, and locate the folder that you have just created, or just
type in “C:\Users\user_name\folder”, where user_name is your login ID and folder is the
name of the folder that you have created. Next, click the “OK” button.

Computer Organization, Lab Assignment 1

January, 2017

6

Note that the workspace is located on the local drive “C:\” and hence, it only exists
on the particular machine on which you are working. To enable portability, once you
are done with a lab session, copy the workspace to your network drive “H:\”. Next
time you log in to a different machine, copy the workspace from your network drive
“H:\” to “C:\Users\user_name\” to resume the work from the last lab session.

Creating a new project
To create a new project, from the File menu, select new application project, as
illustrated in Figure 4.

Figure 4. Creating a new project

The applications that will be created throughout the labs will be written in C
language. All applications should be executed on a hardware platform that has been
specifically designed for the purpose of this course. The hardware platform is based
on a MicroBlaze processor, an intellectual property (IP) softcore provided by Xilinx.
Observe that when you start using the Xilinx SDK tool, there is a set of predefined
hardware platforms that you can choose from. However, the hardware platform that
you need to use is not available in this list. Therefore, you first need to add the new
hardware platform.

Computer Organization, Lab Assignment 1

January, 2017

7

Setting up the target hardware platform

To add the new hardware platform, download the hardware specification that is
available on the course web-page (“MicroBlazeHWPlatform.hdf”) and save it in
“C:\Users\user_name\”, where user_name is your login ID. Note that this file must
have the extension “.hdf”. Next, in the Target Hardware section, click the “New”
button as illustrated in Figure 5.

Figure 5. Adding a new hardware platform

By following these steps, you are creating a new hardware project. Name this project
as “MicroBlazePlatform”. For the hardware specification, click the “Browse” button
and locate the hardware specification file that you downloaded from the course web-
page. This is illustrated in Figure 6.

Computer Organization, Lab Assignment 1

January, 2017

8

Figure 6. Creating a new hardware project

By completing these steps, you have successfully created a new application project
that runs on the hardware platform designed for the purposes of this course.

By using the same workspace, next time when you create a project, the target
hardware platform will be available in the drop-down list, and thus, it is sufficient to
do this step only once. However, the labs are organized such that you only need one
project that you will use in the remaining laboratory exercises.

To be able to write an application in your application project you need to add a
source file where you write the code. To add a source file to the project, in the
Project Explorer, select the “src” folder of the project to which you want to add the
source file, click the right mouse button, and select new source file. These steps are
illustrated in Figure 7. For future reference, name this file as “main.c”. This file will
contain the main program that will be executed when you run the project.

Computer Organization, Lab Assignment 1

January, 2017

9

Figure 7. Adding a new source file

The first C program
In the recently created source file, i.e. “main.c”, type the following code:

Analyze the code.

• What does the code do?

• What is the expected value of the variable “b”?

Running/debugging the program

Before you can run/debug the program, two steps need to be performed. First, you
need to program the FPGA of the Nexys 4 board according to the provided
hardware specification. To do so, click the “Program FPGA” button. Observe
that this process is only done as long as the FPGA has not been programmed
before. Once the FPGA is programmed, i.e. the hardware platform is implemented
on the FPGA, the same hardware platform will be available until the board is
disconnected from the computer. Initially, the FPGA board is not programmed.

char	b;	
int	main(){	
	 b=9;	
	 while	(1==1){	
	 	 if	(b<10){	
	 	 	 b--;	
	 	 }	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

10

Once the FPGA is programmed, the second step is to build the project. This step is
responsible to convert the source files into executable files that later can be executed
by the MicroBlaze processor. To build the project, click the “Build All” button.
Make sure that all the changes in the source file are saved, before you build the
project. To save the changes in a source file, click the “Save All” button. By
default, whenever you save the changes in the source files, a build is performed.
Now, you are ready to run/debug the program. To run/debug the program, in the
Project Explorer, select the project application that you want to run, click the right
mouse button and select “Debug As”à”4 Launch on Hardware (GDB)”. These
steps are illustrated Figure 8 (Note: The option GDB was numbered as 1 in an
older version of the tool, however in the latest version GDB is numbered as 4).

Figure 8. Running/Debugging the application

To run/debug the program you can also use the shortcut button , where from
the drop-down list you select “Debug Asà4 Launch on Hardware (GDB)”.
Note that if you want to use the shortcut button, make sure that the correct project
is selected in the Project Explorer.
When debugging the project, the tool asks you to open the Debug Perspective.
Check the “Remember my decision” box, and click the “Yes” button to proceed.

Computer Organization, Lab Assignment 1

January, 2017

11

The Debug Perspective allows you to control the execution of your program by
setting breakpoints, suspending launched programs, stepping through your code, and
examining the contents of variables.
Initially, the program is suspended on the first line of the main function, highlighted
in green, as shown in Figure 9.

Figure 9. Debugging the main program

By adding expressions, you can trace the changes of different expressions, or
variables, as the program is running. To open the expression view, from the Window
menu, select Show ViewàExpressions. To add a new expression, click the “Add
new expression” button and type the expression that you would like to evaluate. To
evaluate the current value of a given variable, type the name of the variable. An
example to evaluate the current value of the variable “b” is provided in Figure 10.

Computer Organization, Lab Assignment 1

January, 2017

12

Figure 10. Evaluating the value of a variable

Observe that you can change the formatting of the value to either see the default,
decimal, hexadecimal, octal or binary representation. To do so, on the Value field, in
the Expression view, click the right mouse button, select Format, and change the
formatting.
At this point, the program is suspended, i.e. it is not running. From this point, you
can either step through the code or you can let the program run. To step through the
code, click the “Step Into” button. After each step, the program is again
suspended. If you decide to run the program, click the “Resume” button. If you
want to suspend the program from running, click the “Suspend” button.
Click the “Resume” button and let the program run for a while, and then click
the “Suspend” button.

• What is the value of the variable “b”?______________________________
• What is the binary representation of “b”?___________________________

Terminate the program by clicking the “Terminate” button.

In the Debug Perspective, you can also examine/modify the contents of the
memory. To do this, first start debugging the program. Next, in the Debug
Perspective, from the Window menu, select Show ViewàMemory. In the Memory

Computer Organization, Lab Assignment 1

January, 2017

13

view, you can add a monitor, to inspect/modify a given memory location. To add a
monitor, click the “Add Memory Monitor” button. A pop-up box appears as shown
in Figure 11. Type in the address “0x1a80” and click the “OK” button.

Figure 11. Adding a memory monitor

The memory is byte addressable (8 bits are stored at each memory address). The
memory is displayed as a matrix, where the memory address is obtained by summing
up the row number and the column number.
By default, the memory monitor shows a view where 4 bytes (8 hexadecimal digits)
are combined together, and 4 such entries are displayed per row. However, the
Memory view allows you to change the layout, i.e. how many entries per row, how
many columns to be combined to present an entry. To change the layout, position
the mouse over the memory, click the right mouse button, and select “Format”. In
the pop up window, you can specify the row size, i.e. the number of units (bytes) to
be displayed per row, and you can select how many units (bytes) to be displayed per
column. In Figure 12, we show the settings for a layout where one word (4 bytes) is
displayed per row and each column displays one byte. Click the “Save as Defaults”
button to have this layout as default.

Computer Organization, Lab Assignment 1

January, 2017

14

Figure 12. Changing the layout of the memory window

Next, step through the program. Answer the following questions.
• Are there any changes in the memory?______________________________
• Which memory address is affected?________________________________
• Compare the contents of the variable “b” with the contents of the affected

memory address. What is the conclusion?____________________________
• What is stored at that memory address?_____________________________
• Modify the contents of the memory address next to the affected memory

address by typing a non-zero value at that address. Does this have any impact
on the variable “b”? __

• How many bits are required to store a variable of type char?______________
Run the program.

• Why is the value of the variable “b” larger than 10? ____________________
__
__

Terminate the program by clicking the “Terminate” button.
In the rest of the assignments of this laboratory exercise we shall examine the
different data types in C, and how they are stored in memory. Before you start with a
new assignment, comment the contents of the “main.c” file. A comment starts with
“/*” and ends with “*/”. At the beginning of the comment put a note such that you
know to which assignment the commented code belongs to.

Computer Organization, Lab Assignment 1

January, 2017

15

Assignment 1.
The purpose of this assignment is to analyze the “unsigned	char” data type.

Open the C/C++ perspective, by clicking the icon in the top-right corner.
Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, and then debug the program. In
the debug perspective, run the program by pressing the “Resume” button.

• At which memory address is the variable “b” stored?___________________
• What is the value of the variable “b”?_______________________________
• Why is the value different compared to the previous case?_______________

__
__

• How many bits are required to store a variable of type unsigned char?______
Terminate the program, and switch to C/C++ perspective.

Assignment 2.

The purpose of this assignment is to analyze the “int” data type.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

unsigned	char	b;	
int	main(){	
	 b=9;	
	 while	(1==1){	
	 	 if	(b<10){	
	 	 	 b--;	
	 	 }	
	 }	
}	

int	b;	
int	main(){	
	 b=9;	
	 while	(1==1){	
	 	 if	(b<10){	
	 	 	 b--;	
	 	 }	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

16

Build the project after you have done the changes, and then debug the program. In
the debug perspective, step through the program by pressing the “Step Into”
button.

• At which memory address is the variable “b” stored?___________________
• Modify the contents of the memory address next to the affected memory

address by typing a non-zero value at that address. Does this have any impact
on the variable “b”? __

 Undo the modifications from the previous step, and keep on stepping through the
program, until the value of “b” has reached the value of zero. Step through again
and make sure that the statement “b--” is executed.

• What happens in the memory?___________________________________
• How many bytes are needed to store a variable of type int?_______________

Run the program.
• What is the value of the variable “b”?_______________________________
• What is the binary representation of “b”?____________________________
• What is the hexadecimal representation of “b”?________________________
• At which address is the most significant byte of the variable “b” stored?_____
• At which address is the least significant byte of the variable “b” stored?_____
• Which format is used (big vs. little endian)?___________________________

 Terminate the program, and switch to C/C++ perspective.

Assignment 3.

The purpose of this assignment is to analyze the “unsigned	int” data type.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, and then debug the program. In
the debug perspective, step through the program by pressing the “Step Into”
button.

unsigned	int	b;	
int	main(){	
	 b=9;	
	 while	(1==1){	
	 	 if	(b<10){	
	 	 	 b--;	
	 	 }	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

17

• At which memory address is the variable “b” stored?___________________
• Modify the contents of the memory address next to the affected memory

address by typing a non-zero value at that address. Does this have any impact
on the variable “b”? __

 Keep on stepping through the program, until the value of “b” has reached the value
of zero. Step through again and make sure that the statement “b--” is executed.

• What is the value of the variable “b”?_______________________________
• What happens with the memory?___________________________________
• How many bytes are needed to store a variable of type unsigned int?_______

Run the program.
• What is the value of the variable “b”?_______________________________
• What is the difference when the keyword “unsigned” is used? ____________

__
__

 Terminate the program, and switch to C/C++ perspective.

Assignment 4.

The purpose of this assignment is to analyze the array data type. In particular, this
assignment focuses on an array of elements where each element is of type char.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, and then debug the program. In
the debug perspective, step through the program by pressing the “Step Into”
button. Open the memory view and observe what happens as you step through the
program.

• What is the value of the variable “b”?_______________________________
• What does this value represent?____________________________________
• Where in the memory, are the elements of the array stored?______________

char	b[10];	
int	main(){	 	
int	i;	
	 while	(1==1){	
	 	 for	(i=0;i<10;	i++)	
	 	 	 b[i]=i;	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

18

• What is the address of the element b[3]?____________________________
• What is the size of each element of the array?_________________________

Terminate the program, and switch to C/C++ perspective.

Assignment 5.

The purpose of this assignment is to analyze the array data type. In particular, this
assignment focuses on an array of elements where each element is of type int.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, and then debug the program. In
the debug perspective, step through the program by pressing the “Step Into”
button. Open the memory view and observe what happens as you step through the
program.

• What is the value of the variable “b”?_______________________________
• What does this value represent?____________________________________
• Where in the memory, are the elements of the array stored?______________
• What is the address of the element b[3]?____________________________
• What is the size of each element of the array?_________________________

Terminate the program, and switch to C/C++ perspective.

int	b[10];	
int	main(){	 	
int	i;	
	 while	(1==1){	
	 	 for	(i=0;i<10;	i++)	
	 	 	 b[i]=i;	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

19

Pointers
	
As shown with the previous examples, variables of different types (int,char) are
stored in memory. A memory address is associated to each variable, and the value of
the variable is stored at that memory address. In C, a special operator “&” (address
of) is used to obtain the memory address at which a variable is stored. For example,
given that a variable “b” is declared, the memory address where this variable is
stored can be obtained by using the expression “&b”. Next, we discuss a new type of
a variable, i.e. a pointer. A pointer is a variable whose value is interpreted as a memory
address. This allows a pointer to read/change the contents of the memory address to
which it points to. Since at a given memory address a specific data type is stored,
when a pointer is declared, it is declared such that it points to a memory address
where a specific data type is stored. In C, a pointer is declared as:
<data_type> *pointer_name;
The previous line declares a pointer (pointer_name) that points to a memory address
where a specific <data_type> resides. By using the declared pointer, we can access
(read or write) the memory address to which it points. The following line shows how
to write to a memory location where the pointer points to:
*pointer_name=5;
Next, we show an example on how to use pointers.

Assignment 6.

The purpose of this assignment is to get a better understanding on pointers. In
particular, in this assignment we shall use an example of a pointer that points to
char type.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, step through the code, and after
each step answer the following questions.

char	*address;	
char	b;	
int	main(){	 	
	 b=0;	
	 address=&b;	
	 *address=5;	
	 while	(1==1){		 	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

20

• What is the value of the variable “b”?_______________________________
• What is the value of the variable “address”?__________________________

Check the contents of the memory at the address pointed by the variable “address”.
• What is stored in the memory at that memory address?__________________
• What is the value of the variable “b”?_______________________________
• What is the memory address of the variable “address”?_________________

Assignment 7.

Comment the contents of the “main.c” file, and add the source code, as shown in
the figure below.

Build the project after you have done the changes, and then step through the code.

Explain what this code does.

char	*address;	
int	b;	
int	main(){	
	 b=0xFFFFFFF;	
	 address=(char	*)&b+3;	
	 *address+=0xF0;	
	 while	(1==1){	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

21

I/O handling

In many computer systems, the processor (CPU) communicates with other devices.
These devices may be input devices (keyboard, mouse, scanner), in which case the
processor receives data from these devices, or output devices (printer, monitor)
where the processor sends data to these devices. Furthermore, it is possible to have
devices that at different points in time operate as input or output devices. Think of a
printer/scanner device. When used for printing, this device operates as an output
device. However, when used for scanning, the same device operates as an input
device. Such devices are called I/O (input/output) devices. To communicate with
other devices, the processor needs to address the different devices that are
connected to it. This is similar to how the processor addresses different memory
locations in the memory. However, when it comes to peripheral devices, there are
two main methods on how the processor communicates with these devices, i.e.
memory-mapped I/O and isolated I/O. In the case of memory-mapped I/O, the
same address space is used to address the memory and the peripheral devices. In
such case, when the CPU accesses an address, it may refer to a portion of physical
RAM, but it can also refer to memory (registers) of an I/O device. Thus, the entire
memory space is shared between memory and peripheral devices. The advantage of
memory-mapped I/O is that the processor can use the same instructions when
accessing memory or I/O devices. In case of memory-mapped I/O the different
registers (control, status and data) of the device are mapped to different memory
addresses. Given that these addresses are known in advance, by using pointers, we
can write software such that we can configure and send/receive data, and check the
status of these devices.

Assignment 8.

In this assignment, we show how we can use the 16 switches and the 16 LEDs on
the Nexys 4 board. Both the switches and the LEDs are interfacing the
microprocessor through memory-mapped I/O devices. The SWITCHES device is
a configurable I/O device that interfaces the 16 switches on the Nexys 4 board to
the MicroBlaze microprocessor and the device LEDS is a configurable I/O device
that interfaces the 16 LEDs on the Nexys 4 board to the MicroBlaze
microprocessor. Each device has one 32-bit control and one 32-bit data register.
The control register is used to control the data flow direction for each bit of the data
register, i.e. each bit of the data register can be configured either as an input or
output. The SWITCHES device has to be configured as an input device, such that
each bit in the data register of this device is configured as an input, i.e. the state of
each switch on the board is input information that the processor can read. On the

Computer Organization, Lab Assignment 1

January, 2017

22

other hand, the LEDS device has to be configured as an output device, such that
each bit of the data register of this device is configured as output, i.e. the processor
will control the state of the LEDs on the board. The devices are configured by
accessing and writing to their corresponding control registers. Since each of the I/O
devices has a control and a data register that are already mapped to known memory
addresses, for the ease of use, we create a header file where we define labels (macros)
to refer to these particular registers (memory addresses).
To create a new header file, in the Project Explorer locate the “src” folder, right
click, and from the popup menu select “New->Header File”. Use
“address_mapping.h” as a name for the new header file that you are about to create.
In the newly created file “address_mapping.h”, copy and insert the following lines
between the “#define” and “#endif” directives:

#define	SWITCHES_DATA		 (unsigned	int	*)	0x40020000	
#define	SWITCHES_CONTROL		(unsigned	int	*)	0x40020004	
#define	LED_DATA		 	 (unsigned	int	*)	0x40010000	
#define	LED_CONTROL		 (unsigned	int	*)	0x40010004	

The header file contains definitions for different pointers. For example, to access the
control register of the LEDS device, we can use the pointer “LED_CONTROL” which
points to a memory address “0x40010004” and accesses a 32 bit data (the size of the
control register is 32 bits). Each of these 32 bits configures the corresponding bit of
the data register of the LEDS device as either input or output. When a particular bit
in the control register is set to “0”, the corresponding bit in the data register is
configured as output, i.e. the data flows from the processor to the device. When a
particular bit in the control register is set to “1”, the corresponding bit in the data
register is configured as input, i.e. the data flows from the device to the processor.
Since the LEDs are used to output information, we need to ensure that the control
register for the LEDS device, i.e. “LED_CONTROL”, is configured such that each of its
bits is set to “0”. Remember that “LED_CONTROL” is a pointer that points to the known
memory address “0x40010004”. To write to this register, we need to dereference the
pointer, i.e. we use “*LED_CONTROL”.

The following code shows a simple example on how we can use the definitions from
the header file to enable access to the memory-mapped devices.

Computer Organization, Lab Assignment 1

January, 2017

23

Debug the program by stepping through the code. After each step, modify the state
of the switches. Follow the changes for each of the variables, and the memory
mapped registers of the two I/O devices. Answer the following questions:

At which memory address is the variable “counter” stored?___________________
At which memory address is the variable “state” stored?_____________________
Does the variable “state”, at every point in time, have the same value as the data
register of the switches? Explain the reasoning behind your answer.

Assignment 9.

Study the code below. Do you expect any difference? ________________________

#include	"address_mapping.h"	
	
unsigned	int	state;	
unsigned	int	counter;	
int	main(){	
	 *SWITCHES_CONTROL=0xFFFF;	
	 *LED_CONTROL=0x0;	
	 counter=10;	
	 while	(1==1){	
	 			while	(counter>=0){	
	 	 state=*SWITCHES_DATA;	
	 	 *LED_DATA=counter;	
	 	 counter--;	
	 			}	
	 }	
}	

#include	"address_mapping.h"	
	
unsigned	int	state;	
int	main(){	
	 *SWITCHES_CONTROL=0xFFFF;	
	 *LED_CONTROL=0x0;	
	 *LED_DATA	=10;	
	 while	(1==1){	
	 			while	(*LED_DATA>=0){	
	 	 state=*SWITCHES_DATA;	
	 	 *LED_DATA=*LED_DATA-1;	
	 			}	
	 }	
}	

Computer Organization, Lab Assignment 1

January, 2017

24

Comment the contents of the “main.c” file, and add the provided source code. Build
the project and debug the program by stepping through the code.

What do you observe on the board?______________________________________

Open the “Expression” view in the debug environment, and check the contents of
the expression “*LED_DATA”. How is the expression evaluated?__________________

What happens when the program reads a write-only memory location?___________

Assignment 10.

Write a sample code that writes to the data register of the SWITCHES device. Check
in the memory window to see the contents of the data register (“*SWITCHES_DATA”).

Do you observe any changes? ______________________________________

What happens when the program writes to a read-only memory location?_________

Assignment 11.

Write a program that based on the state of the switches, turns on/off the
corresponding LED. For example, if the right-most switch is on, the right-most
LED is turned on.

Assignment 12.

Write a program that based on the state of the switches, will turn on a number of
LEDs that corresponds to the number of switches that are turned on. For example,
if three switches are turned on, then only the rightmost three LEDs should be
turned on. Hint: the decimal number 2n-1 has a binary representation that contains
n ‘1’s. Note that you are not allowed to use C library functions to implement the
function that computes power of a number.

