

EITF35: Introduction to Structured VLSI Design

Introduction to FPGA design

Rakesh Gangarajaiah

Rakesh.gangarajaiah@eit.lth.se

Slides from Chenxin Zhang and Steffan Malkowsky

- What is FPGA?
 - Field Programmable Gate Array

- What is FPGA?
 - Field Programmable Gate Array
 - Configurable logic blocks + interconnects + IOs + memory
- Why do we use it?
 - High performance & Flexible
 - Shorter time to market

- What is FPGA?
 - Field Programmable Gate Array
 - Configurable logic blocks + interconnects + IOs + memory
- Why do we use it?
 - High performance & Flexible
 - Shorter time to market
- Where do we use it?
 - Prototyping
 - Computer vision
 - Medical imaging
 - Software-defined radio

FPGA vs. Microprocessor

	Intel Itanium 2	Xilinx Virtex-II Pro (XC2VP100)		
Technology	0.13 µm	0.13 µm		
Clock speed	1.6 GHz	180 MHz		
Internal memory bandwidth	102 GBytes/S	7.5 TBytes/S		
# Processing units	5 FPU (2 MACs+1 FPU) 6 MMU 6 Integer units	212 FPU or 300+Integer units or 		
Power consumption	130 W	15 W		
Peak performance	8 GFLOPs	38 GFLOPs		
Sustained performance	~2GFLOPs	~19 GFLOPs		
IO/External memory bandwidth	6.4 GBytes/S	67 GBytes/S		
		(Courtesy: Nallatech)		

FPGA devices

- Manufactures:
 - Xilinx: Virtex, Kintex, Artix, Spartan
 - Altera: Cyclone, Arria, Stratix
 - Lattice Semiconductor: flash, low power
 - Microsemi (Actel): antifuse, mix-signal
 - Achronix: high speed
 - QuickLogic: application-specific (handheld)

FPGA architectures

- Early FPGAs
 - N x N array of unit cells (CLB + routing)
 - Configurable Logic Blocks
 - Special routing along center axis
- Next Generation FPGAs
 - M x N unit cells
 - Small block RAMs around edges
- More recent FPGAs
 - Added block RAM arrays
 - Added multiplier cores
 - Added processor cores

FPGA architecture trends

- Memories
 - Single & Dual-port RAMs
- Digital Signal Processor Engines
- Embedded Processors
 - Hardcore (dedicated processors)
 - Soft core (synthesized from a HDL)
- High speed/performance I/O connectivity
 - PCIe interface block
 - I/O transceiver
 - Gigabit Ethernet
 - HPC and LPC interfaces
- Clock management blocks

Programming technology

Feature	ature SRAM Antifuse		Flash/E2PROM	
Technology	State-of-the-art	One or more generations behind	One or more generations behind	
Reprogrammable	Yes No (in system)		Yes (in system or offline)	
Reprogramming speed	Fast		3x slower than SRAM	
Volatile	Yes	No	No	
Instant-on	No	Yes	Yes	
Security	Acceptable	Very Good	Very Good	
Size of Config. Cell	Large (Six transistors)	Very small	Medium-small (Two transistors)	
Power consumption	Medium	Low	Medium	

とう

Xilinx FPGA architecture

SRAM-based FPGA

Configurable logic block (CLB) (I)

• One CLB contains two slices (7 series Xilinx FPGA)

Configurable logic block (CLB) (II)

- One CLB contains two slices
- Each slice:
 - Four Look-up tables (LUTs)
 - Eight D Flip-Flops (DFFs)
 - Multiplexers and arithmetic gates
 - Carry logic
- 2/3 of all slices are SLICEL and 1/3 SLICEM
 - Distributed RAM and Shift registers in SLICEM
 - Higher Interconnect density in 7 series

Look-up table (LUT) (I)

Look-up table (LUT) (II)

- Inputs are used as a pointer into a LUT.
- Decoded using a hierarchy of transmissiongate MUXs.
- Transmission-gate: "pass" or "high-impedance".

LUT based RAM (Distributed RAM)

- Normal LUT performs "read" operation.
- For "write" operation, address decoders + write enable.
- Can be concatenated to created larger RAMs.
- Can also be used as shift registers (some of the LUTs).

Programmable Interconnects (I)

Programmable Interconnects (II)

- Programmable swich, also called programmable interconnect points (PIP).
- Implemented using transmission gates.
- Several types of PIPs:

Xilinx Artix-7 FPGA

• XC7A100T:

- ~8000 CLBs
- ~5000 kb of BRAMs
- ~1200 Kb Distributed RAM
- 240 DSP units

Table 1-1:	Artix-7 FPGA	CLB Resources	(Cont'd)
------------	--------------	----------------------	----------

Device	Slices ⁽¹⁾	SLICEL	SLICEM	6-input LUTs	Distributed RAM (Kb)	Shift Register (Kb)	Flip-Flops
7A50T	8,150	5,750	2,400	32,600	600	300	65,200
7A75T	11,800 ⁽²⁾	8,232	3,568	47,200	892	446	94,400
7A100T	15,850	11,100	4,750	63,400	1,188	594	126,800
7A200T	33,650	22,100	11,550	134,600	2,888	1,444	269,200

Notes:

1. Each 7 series FPGA slice contains four LUTs and eight flip-flops; only SLICEMs can use their LUTs as distributed RAM or SRLs.

2. Number of slices corresponding to the number of LUTs and flip-flops supported in the device.

FPGA Design flow

- Synthesis
 - Parses HDL design
 - Infers Xilinx primitives
 - Generates design netlist
- Translate
 - Merges incoming netlists and constraints into a design file
- Map
 - Maps (places) design into the available resources on the target device
- Place and Route
 - Places and routes design

Design constraints

Are FPGAs perfect?

FPGAs are inefficient

- Compared to ASICs, penalties in FPGAs:
 - Area: 17 54x
 - Speed: 3 7x
 - Power: 6 62x

Main culprit: INTERCONNECT!

Tabula Spacetime

- Ultra-rapid full/partial reconfiguration with makes it possible to fold more functions onto the same hardware: multi-GHz rates
- Their claim:
 - 2.5x logic density
 - 3.7x DSP performance

www.tabula.com

Coarse-grained reconfigurable architecture

- Currently in FPGA
 - Dedicated building blocks: multiplier, DSP core, processor
 - Partial configuration
- Moving torwards coarse-grained architecture:
 - Block-level instead of bit manipulations
 - Lower area and power consumption
 - High-level programming: e.g. xilinx vivado
 - Run-time configuration

Introduction to Xilinx Software

- Xilinx Vivado
 - Integrated tool for design, simulation, synthesis, implementation and FPGA debug
- IP generator
 - Tool used to instantiate Xilinx and third-party IPs into your design
 - Clock generator, Dividers, BRAM etc.
- Integrated Logic Analyzer
 - Used for real time debugging

Introduction to Xilinx Software

• Xilinx Vivado

References

- Clive "Max" Maxfield, "The Design Warrior's Guide to FPGAs – Devices, Tools and Flows", ELSEVIER, 2004.
- Bill Jason P. Tomas, "Introduction to Field Programmable Gate Arrays (FPGAs)".
- Xilinx, "Nexys-4 FPGA Family Data Sheet".

