EITF35: Introduction to Structured VLSI Design

Introduction to FPGA design

Rakesh Gangarajaiah
Rakesh.gangarajaiah@eit.Ith.se

Slides from Chenxin Zhang and Steffan Malkowsky

WWW.FPGA

- What is FPGA?
- Field Programmable Gate Array

Interconnects

IO blocks

WWW.FPGA

- What is FPGA?
- Field Programmable Gate Array
- Configurable logic blocks + interconnects + IOs + memory
- Why do we use it?
- High performance \& Flexible
- Shorter time to market

WWW.FPGA

WWW.FPGA

- What is FPGA?
- Field Programmable Gate Array
- Configurable logic blocks + interconnects + IOs + memory
- Why do we use it?
- High performance \& Flexible
- Shorter time to market
- Where do we use it?
- Prototyping
- Computer vision
- Medical imaging
- Software-defined radio

FPGA vs. Microprocessor

	Intel Itanium 2	Xilinx Virtex-II Pro (XC2VP100)
Technology	$0.13 \mu \mathrm{~m}$	$0.13 \mu \mathrm{~m}$
Clock speed	1.6 GHz	180 MHz
Internal memory bandwidth	102 GBytes/S	7.5 TBytes/S
\# Processing units	```5 FPU (2 MACs+1 FPU) 6 MMU 6 Integer units```	212 FPU or 300+Integer units or ...
Power consumption	130 W	15 W
Peak performance	8 GFLOPs	38 GFLOPs
Sustained performance	~2GFLOPs	~19 GFLOPs
IO/External memory bandwidth	6.4 GBytes/S	67 GBytes/S
		(Courtesy: Nallatech)

FPGA devices

Exilinx

- Manufactures:
- Xilinx: Virtex, Kintex, Artix, Spartan
- Altera: Cyclone, Arria, Stratix
- Lattice Semiconductor: flash, low power
- Microsemi (Actel): antifuse, mix-signal

HLATTICE
CMicrosemi

- Achronix: high speed
- QuickLogic: application-specific (handheld)

Department of Electrical and Information Technology, Lund University

Some FPGA boards

FPGA architectures

- Early FPGAs
- $\mathrm{N} \times \mathrm{N}$ array of unit cells (CLB + routing)

- Configurable Logic Blocks
- Special routing along center axis
- Next Generation FPGAs
- $\mathrm{M} \times \mathrm{N}$ unit cells
- Small block RAMs around edges
- More recent FPGAs
- Added block RAM arrays
- Added multiplier cores
- Added processor cores

FPGA architecture trends

- Memories
- Single \& Dual-port RAMs
- Digital Signal Processor Engines
- Embedded Processors
- Hardcore (dedicated processors)
- Soft core (synthesized from a HDL)
- High speed/performance I/O connectivity
- PCle interface block
- I/O transceiver
- Gigabit Ethernet
- HPC and LPC interfaces
- Clock management blocks

Programming technology

Feature	SRAM	Antifuse	Flash/E2PROM
Technology	State-of-the-art	One or more generations behind	One or more generations behind
Reprogrammable	Yes (in system)	No	Yes (in system or offline)
Reprogramming speed	Fast	---	3x slower than SRAM
Volatile	Yes	No	No
Instant-on	No	Yes	Yes
Security	Acceptable	Very Good	Very Good
Size of Config. Cell	Large (Six transistors)	Very small	Medium-small (Two transistors)
Power consumption	Medium	Low	Medium

Xilinx FPGA architecture

Configurable logic block (CLB) (I)

- One CLB contains two slices (7 series Xilinx FPGA)

Configurable logic block (CLB) (II)

- One CLB contains two slices
- Each slice:
- Four Look-up tables (LUTs)
- Eight D Flip-Flops (DFFs)
- Multiplexers and arithmetic gates
- Carry logic
- 2/3 of all slices are SLICEL and 1/3 SLICEM
- Distributed RAM and Shift registers in SLICEM
- Higher Interconnect density in 7 series

Look-up table (LUT) (I)

Look-up table (LUT) (II)

- Inputs are used as a pointer into a LUT.
- Decoded using a hierarchy of transmissiongate MUXs.
- Transmission-gate: "pass" or "high-impedance".

LUT based RAM (Distributed RAM)

- Normal LUT performs "read" operation.
- For "write" operation, address decoders + write enable.
- Can be concatenated to created larger RAMs.
- Can also be used as shift registers (some of the LUTs).

Programmable Interconnects (I)

Programmable Interconnects (II)

- Programmable swich, also called programmable interconnect points (PIP).
- Implemented using transmission gates.

- Several types of PIPs:

Xilinx Artix-7 FPGA

- XC7A100T:
- ~8000 CLBs
- ~5000 kb of BRAMs
- ~1200 Kb Distributed RAM
- 240 DSP units

Table 1-1: Artix-7 FPGA CLB Resources (Cont'd)

Device	Slices $^{(1)}$	SLICEL	SLICEM	6-input LUTs	Distributed RAM $\mathbf{(K b)}$	Shift Register $(\mathbf{K b})$	Flip-Flops
7A50T	8,150	5,750	2,400	32,600	600	300	65,200
7A75T	$11,800^{(2)}$	8,232	3,568	47,200	892	446	94,400
7A100T	15,850	11,100	4,750	63,400	1,188	594	126,800
7A200T	33,650	22,100	11,550	134,600	2,888	1,444	269,200

Notes:

1. Each 7 series FPGA slice contains four LUTs and eight flip-flops; only SLICEMs can use their LUTs as distributed RAM or SRLs.
2. Number of slices corresponding to the number of LUTs and flip-flops supported in the device.

FPGA Design flow

- Synthesis
- Parses HDL design
- Infers Xilinx primitives
- Generates design netlist
- Translate
- Merges incoming netlists and constraints into a design file
- Map
- Maps (places) design into the available resources on the target device
- Place and Route
- Places and routes design

Design constraints

Are FPGAs perfect?

FPGAs are inefficient

- Compared to ASICs, penalties in FPGAs:
- Area: 17-54x
- Speed: 3-7x
- Power: 6-62x
- Main culprit: INTERCONNECT!

Tabula Spacetime

- Ultra-rapid full/partial reconfiguration with makes it possible to fold more functions onto the same hardware: multi-GHz rates
- Their claim:
- 2.5x logic density
- 3.7x DSP performance
www.tabula.com

Coarse-grained reconfigurable architecture

- Currently in FPGA
- Dedicated building blocks: multiplier, DSP core, processor
- Partial configuration
- Moving torwards coarse-grained architecture:
- Block-level instead of bit manipulations
- Lower area and power consumption
- High-level programming: e.g. xilinx vivado
- Run-time configuration

Introduction to Xilinx Software

- Xilinx Vivado
- Integrated tool for design, simulation, synthesis, implementation and FPGA debug
- IP generator
- Tool used to instantiate Xilinx and third-party IPs into your design
- Clock generator, Dividers, BRAM etc.
- Integrated Logic Analyzer
- Used for real time debugging

Introduction to Xilinx Software

- Xilinx Vivado

References

- Clive "Max" Maxfield, "The Design Warrior's Guide to FPGAs - Devices, Tools and Flows", ELSEVIER, 2004.
- Bill Jason P. Tomas, "Introduction to Field Programmable Gate Arrays (FPGAs)".
- Xilinx, "Nexys-4 FPGA Family Data Sheet".

