
EITF35 - Introduction to Structured VLSI Design
(Fall 2016)

State Machine Modelling

(Sequence Detector)

Teacher: Dr. Liang Liu

Lab Instructors:

Steffen Malkowsky
Hemanth Prabhu
Mojtaba.Mahdavi

Rakesh Gangarajaiah
Siyu Tan

v.1.0.0

1

Abstract

This document describes basic state machines for both Mealy and Moore style.
This document is an instructional manual for lab work, which is part of course
EITF35 “Introduction to Structured VLSI” at EIT, LTH. The lab will give the stu-
dents a stint to practice developing state machines in VHDL. A simulation that prove
functionality will be carried out using QuestaSim VHDL simulator. The files for
testbench and stimuli can be downloaded from the course homepage.

Contents
1 Sequence Detector for the sequence ‘1011’ 3

1.1 Introduction . 3
1.2 Objectives . 3
1.3 Design Example . 3
1.4 Testbench . 6

2 Assignment 7

2

1 Sequence Detector for the sequence ‘1011’
In this lab, you will learn how to model a finite state machine (FSM) in VHDL.

1.1 Introduction
You will create a sequence detector for a given bit sequence. You will develop a sequence
detector using Mealy/Moore machine model. This will help you become more familiar
with how to implement a FSM based controller in VHDL. This lab is completed using
the QuestaSim tool. You will use a typical HDL flow, write the HDL code, and run a
behavioural HDL simulation.

1.2 Objectives
After completing this lab, you will be able to:

• Perform the design flow to generate state machines in VHDL.
• Simulate a VHDL based design in QuestaSim.

1.3 Design Example
As an illustrative example a sequence detector for bit sequence ‘1011’ is described. Every
clock-cycle a value will be sampled, if the sequence ‘1011’ is detected a ‘1’ will be
produced at the output for 1 clock-cycle. There are two methods to design state machines,
first is Mealy and second is Moore style. We will give you an example for both styles.

Following is the behaviour description of the sequencer for a Mealy style implemen-
tation and the state diagram is shown in figure 1:

0/0

1/0

1/1

0/0

0/0

1/0

1/0

0/0

S0

S1

S2

S3

Figure 1: Mealy State Machine for Detecting a Sequence of ‘1011’

3

• When in initial state (s0) the machine gets the input of ‘1’ it jumps to the next state
with the output equal to ’0’. If the input is ‘0’ it stays in the same state.

• When in 2nd state (s1) the machine gets an input of ‘0’ it jumps to the 3rd state with
the output equal to ‘0’. If it gets an input of ‘1’ it stays in the same state.

• When in the 3rd state (s2) the machine gets an input of ‘1’ it jumps to the 4th state
with the output equal to ‘0’. If the input received is ‘0’ it goes back to the initial state.

• When in the 4th state (s3) the machine gets an input of ‘1’ it jumps back to the 2nd
state, with the output equal to ‘1’. If the input received is ‘0’ it goes back to the 3rd state.

Following is the behaviour description of the sequencer for a Moore style implemen-
tation and the state diagram is shown in figure 2:

• In initial state (s0) the output of the detector is ‘0’. When machine gets the input of
‘1’ it jumps to the next state. If the input is ‘0’ it stays in the same state.

• In 2nd state (s1) the output of the detector is ‘0’. When machine gets an input of ‘0’
it jumps to the 3rd state. If it gets an input of ‘1’ it stays in the same state.

• In the 3rd state (s2) the output of the detector is ‘0’. When machine gets an input of
‘1’ it jumps to the 4th state. If the input received is ‘0’ it goes back to the initial state.

• In the 4th state (s3) the output of the detector is ‘0’. When machine gets an input of
‘1’ it jumps to the 5th state. If the input received is ‘0’ it goes back to the 3rd state.

• In the 5th state the output of the detector is ‘1’. When machine gets an input of ‘0’
it jumps to the 3rd state, otherwise it jumps to the 2nd state.

1

1

1

0
0

1

1

0

0

0

S4

1

S3

0

S2

0

S1

0

S0

0

Figure 2: Moore State Machine for Detecting a Sequence of ‘1011’

After designing the state machines the models have to be transformed into VHDL
code describing the architecture. Therefore, it is helpful to get an understanding about the
building blocks. Figure 3 shows the entity for the sequence detector to be developed.

The two blocks inside, i.e., the combinational and the register block are build out of
the two processes used within the architecture in VHDL. The combinational block decides
the next state of the FSM according to the current state and the input as well as drives the
output according to the state (and input for Mealy implementation). The register block
saves the current state of the FSM. This structure can be used to write the VHDL code.

4

d_in

combinational

register

>>

next_statecurrent state

sequence_decoder

clk
rst

d_out0

1

0

1

Figure 3: Block diagram clarifying the basic building blocks of an FSM

An example code is shown in Listing 1. This template can be used to code the FSM for
this first assignment. All names for entity, processes and signals have been chosen so they
are comparable to the block diagram in Fig. 3.

Listing 1: An example code for coding an FSM in VHDL
1 use ieee.std_logic_1164.all;
2

3 entity sequence_decoder is
4

5 port (
6 clk : in std_logic;
7 n_rst : in std_logic;
8 d_in : in std_logic;
9 d_out : out std_logic);

10

11 end sequence_decoder;
12

13 architecture sequence_decoder_arch of sequence_decoder is
14

15 -- Define a enumeration type for the states
16 type state_type is (s0, s1, s2, s4);
17

18 -- Define the needed internal signals
19 signal current_state, next_state : state_type;
20

21 begin -- sequence_decoder_arch
22

23 -- purpose: Implements the registers for the sequence decoder
24 -- type : sequential
25 -- inputs : clk, rst, next_state
26 -- outputs: current_state
27 reg: process (clk, rst) -- The register process
28 begin -- process register
29 if rst = ’1’ then -- asynchronous reset (active high)
30 current_state <= ???;
31 elsif clk’event and clk = ’1’ then -- rising clock edge

5

32 current_state <= ???;
33 end if;
34 end process register;
35

36 -- purpose: Implements the next_state logic as well as the output logic
37 -- type : combinational
38 -- inputs : d_in, current_state
39 -- outputs: next_state, d_out
40 comb: process (d_in, current_state) -- The combinational process
41 begin -- process combinational
42

43 -- set default value
44 d_out <= ’0’;
45 next_state <= current_state;
46

47 -- next-state logic
48 case current_state is
49 when s0 =>
50 if d_in = ’0’ then
51 next_state <= s1;
52 else
53 next_state <= s0;
54 end if;
55 when s1 =>
56 ???
57 ???
58 ???
59

60 when others => null;
61 end case;
62 end process combinational;
63

64 end sequence_decoder_arch;

1.4 Testbench
To verify the function of the coded hardware it is necessary to simulate the design. In
this first assignment all necessary files for testing will be provided. However, the writ-
ten VHDL design has to be integrated in the test architecture (FSM_test.vhd). Just un-
comment the prepared code which instantiates and connects your written FSM with the
testing environment. Figure 4 depicts a block diagram of the testing environment. It is
highly recommended to study the provided files to verify that the testbench indeed has the
shown structure.

The input data is read from a stimuli file using the component FILE_READ. The read
data is then serialized and fed into the instantiated unit-under-test (your design) which is
here shown as Moore/Mealy FSM. The clock for the designs is generated by the compo-
nent CLOCKGENERATOR whereas the reset signal is fed from the test architecture in
FSM_test.vhd.

6

stimuli.txt
test

(FSM_test.vhd)

FILE_READ

(file_read.vhd)

parallel-to-

serial

conversion

Moore / Mealy

FSM

CLOCKGENERATOR

(clockgenerator.vhd)

d_in

clk

rst d_out

Figure 4: Block diagram of the testing environment

2 Assignment
You have to perform the following tasks and in-order to get approved on this assignment
you are required to complete all tasks in time:

1. Cross check your state diagrams, i.e. group 1 checks group 2 and group 2
checks group 1 and so on. This is a prerequisite to get access to the labs. Do
this before the first Lab!

2. Implement the FSM for detection of the sequence in VHDL using both Mealy
and Moore implementation.

3. Show the simulation of the design in the LAB. Deadline 2013-09-9, 5PM. (Prefer-
ably, the approval time slots on Fridays will be used for approval.)

The sequences for each lab group will be uploaded on the web after the second lec-
ture.

(All the files needed to test the implementations can be downloaded from the course web
page.)

7

