Introduction to Xilinx Vivado tools

This document is meant to be a starting point for users who are new to using the Xilinx Vivado tools.
The document will describe the basic steps to start, create, simulate, synthesize, implement and
program an FPGA using Vivado through a series of screenshots and an example design which is a
simple binary counter.

Starting the tool:
Use the windows application browser to start Vivado 2014.2. If a different version of the tool is

installed on your computer, start the corresponding tool. The steps described in this document are
very similar to other versions of the tool.

Once the tool is started, you will see a page as shown in Fig. 1. Spend some time looking at the quick
take videos which talk about tool features on a wide variety of subjects.

\/l \/A DO‘ Productivity. Multiplied.

Quick Start
il £ | .
k =
Create New Project Open Project Open Example Project
Tasks
s &
_’A‘?)]

Manage IF Open Hardware Manager Xilinx Tdl Store

Documentation and Tutorials Quick Take Videos Release Motes Guide

Information Center

Figure 1: Vivado start page

Click on Create New Project to start a new project. You will be prompted to specify a directory and a
project name. Use a meaningful name so that it is easier to open and remember what the project
was about at a later point of time.

Project Name
Enter @ name for your project and specify a directory where the project data files will be stored. ‘

Projectmame: | MY_COUNTER] |

Project location: | D:VLSI_2015/FPGA_INTRO_LEC/DEMC_PIT =]

[w] Create project subdirectory

Project will be created at: D:/VLSI_2015/FPGA_INTRO_LEC/DEMO_PIT/MY_COUNTER

| < Back || Next > || Finish || Cancel

Figure 2: Choose project name and directory

Navigate through the project creation assistant by clicking on Next. Add sources, IPs and constraints
if you have any. You can always add new sources, IPs and constraints later into the project.

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

4 Filter
Product category: | Al Package: | Al
Eamily: Al Speed arade: | Al
Sub-Family: Al Temp grade: Al

SiRevision: | Al

Search: | O+ xc7a100tcs | (4 matches)

Part 10 Pin Available LuT FlipFlops Block Gh _ GTY
Count I0Bs Elements RAMs Transceivers Trar

i xc7a100tcsg324-3 324 210 653400 126800 135 240 [i] 0

% xc7al00tcsg324-2 329 210 63400 125800 135 240 i] 0

% xc7a100tcsg324-21 53400 126800

324 210 135 240 a a
= acza100tcsg2 1 135

B =

< Back || Next = || Finish || Cancel |

Figure 3:Choose the target FPGA

Choose the target FPGA. We will use the Xilinx Artix-7 FPGA with a speed grade of 1.

If you are successful in following the above steps, you will end up with a screen which looks like the
one shown in Fig. 4.

i MY_COUNTER - (D/VLSI_2015/FPGA INTRO_LEC/DEMO_PIT/MY_COUNTER/MY_COUNTER xpr] - Vivado 20151 -|omx
B r Fow Tk Wedom Lyt Ve Hep

DRC Violations A Ting

Hiersrchy | Lbxaries | Congie Crde
\ Sources | Tempistes Utiization % Power

& T WS THS TPWS FaledRoutes LUT% LWTs FF% FRs BRAM% BRAMs DSP% DS Strt

Figure 4: Project home page

The left hand pane is called the Flow navigator. It enables you to go through the FPGA flow from
simulation, synthesis and implementation and finally to generate the bitstream and program the
FPGA. More details are shown in Fig.5 .

Project settings such as synthesis, implementation and bit generation options can be modified by
clocking on the Project settings tab.

We will not use the IP integrator in this course, but this is used to package your design into your own
custom IP which can be used by others.

Simulations can be launched by clicking on Run Simulation tab. Remember to set the correct top level
for running simulations. Often it is a testbench which is created by you are provided by the course
instructor to verify your design. This can be done by right clicking on the module name in the
“Sources” window and choosing the right module. Usually, the top level for simulation is different
from the top level file for synthesis and implementation as the testbench contains non synthesizable
constructs.

Synthesis can be launched by clicking on Run Synthesis. Synthesis nor simulation will work if there
are syntax errors, and Vivado will show errors in the “Sources” window as well as the “Messages”
window. A design which has been synthesized can be examined further by clicking on the “Open
Synthesized Design” tab. This will enable you to examine the schematics, add additional timing
constraints and other taskts.

A synthesized design can be implemented for the target FPGA by clicking on the “Run
Implementation” tab. You can examine the design placement on the FPGA, and timing results once
implementation is completed by opening the implemented design.

Finally a bitstream can be generated and the “Open Hardware Manager” tab can be used to connect
to the FPGA and program the generated bitstream for execution on the FPGA.

Flow Mavigator LS

A pdg
QX =

4 Project Manager
[Project Settings
D‘ﬁ' Add Sources

:.;J Language Templates
1F 1P Catalog

4 TP Integrator
Jx% Create Block Design
B8 Cpen Block Design

&) Generate Block Design

Simulation
ﬂ. Simulation Settings
@ Run Simulation

4 RTL Analysis
ﬁ Elaboration Settings
S Eﬁ} Open Elaborated Design

Synthesis
ﬁ Synthesis Settings
$ Run Synthesis

> [Open Synthesized Design

Implementation
ﬁ Implementation Settings
[» Run Implementation

> [Open Implemented Design

4 Program and Debug
i Bitstream Settings
Qﬂ Generate Bitstream

> B% Open Hardware Manager

Choose and change
project settings such
as synthesis and
implementation
constrains, Add
sources, add IPs etc.

Run simulations and
modify simulatio
settings

Run Synthesis. If
successful, you can
open the synthesized
design to examin
schematics, add
constriants etc.

Implement design,
open implemented
design to examine
floorplan, clock
interaction, timing etc

Generate bitstream.
Program device by
clicking on hardware
manager

Figure 5: Project Flow navigator

The Counter example that we will use for this document uses an internal clock generator for running
the counter. The code for the counter module is shown below. It contains a clk_wiz_0 component
which is the clock generator we will use. There is one input clock, connected to the top level port
along with two output clocks, one of which will be used by our design.

library IEEE;
use [IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

entity my_counter is
Port (start_count: in STD_LOGIC;
rst:in STD_LOGIC;
clk_inl:in STD_LOGIC;
count_val : out unsigned (2 downto 0));
end my_counter;

architecture Behavioral of my_counter is

component clk_wiz_0

port

(-- Clock in ports

clk_inl ;in std_logic;
-- Clock out ports

clk_outl cout std_logic;
clk_out2 cout std_logic;
-- Status and control signals
reset 1in std_logic;
locked ;out std_logic

);

end component;

signal clk_outl :std_logic;

signal clk_out2 :std_logic;

signal locked . std_logic;

signal local_count : unsigned (19 downto 0);

signal local_probe : std_logic_vector(7 downto 0);
signal local_count_val : std_logic_vector(3 downto 0);

begin

my_clock_gen: clk_wiz_0
port map (

-- Clock in ports

clk_in1 =>clk_in1,

-- Clock out ports

clk_outl => clk_outl,
clk_out2 => clk_out2,

-- Status and control signals

reset =>'0',

locked => locked

)i

process(clk_outl, rst)
begin
if(rst ='0") then
local_count <= (others =>'0');
elsif(rising_edge(clk_outl1)) then
if(start_count = '1") then
local_count <= ((local_count) + 1);
else
local_count <= local_count;
end if;
end if;
end process;

count_val <= local_count(2 downto 0) + local_count(19 downto 17);
local_count_val <= std_logic_vector(local_count(3 downto 0));

end Behavioral;

The following snippet contains the code for the counter testbench.

library IEEE;
use [IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity counter_testbench is
- Port ();
end counter_testbench;

architecture Behavioral of counter_testbench is

component my_counter
Port (start_count: in STD_LOGIC;
rst:in STD_LOGIC;
clk_inl:in STD_LOGIC;
count_val : out unsigned (2 downto 0));
end component;

signal start_count_tb : std_logic;

signal rst_tbh : std_logic;

signal clk_in_tb : std_logic :='0";

signal count_val_tb : unsigned(2 downto 0);
constant clk_period :time := 2.5ns;

constant delay_val :time := 10ns;
begin
my_counter_inst : my_counter
port map(
start_count => start_count_tb,
rst =>rst_tb,
clk_inl => clk_in_tb,
count_val => count_val_tb);
clk_in_tb <= not clk_in_tb after clk_period;
rst_tb <="'0' after delay_val,'l" after 1500*delay_val;

start_count_tb <='0" after delay_val, '1' after 2000*delay_val,

end Behavioral;

The constraints file looks like this

set_property PACKAGE_PIN E3 [get_ports clk_in1]
set_property IOSTANDARD LVCMOS33 [get_ports clk_in1]

#create_clock -add -name clk_in1 -period 10.00 -waveform {0 5} [get_ports clk_board]

set_property PACKAGE_PIN C12 [get_ports {rst}]

set_property IOSTANDARD LVCMOS33 [get_ports {rst}]

set_property PACKAGE_PIN U9 [get_ports {start_count}]
set_property IOSTANDARD LVCMOS33 [get_ports {start_count}]
#LED O

set_property PACKAGE_PIN T8 [get_ports {count_val[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {count_val[0]}]
#LED 1

set_property PACKAGE_PIN V9 [get_ports {count_val[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {count_val[1]}]
#LED 2

set_property PACKAGE_PIN R8 [get_ports {count_val[2]}]

set_property IOSTANDARD LVCMOS33 [get_ports {count_val[2]}]

set_property CFGBVS Vcco [current_design]

set_property config_voltage 3.3 [current_design]

Since we have a clock generator as a component we will need to instantiate/create this for our
design. We can do this by clicking on “IP Catalog” in the the “Flow Navigator”. Search for an IP
starting with “Clocking Wizard” in the Catalog and double click on it. You should see a window which
lets you customize the IP. Choose two output clocks and leave the rest of the setting unchanged.
Click “OK” to generate the Clock generator IP. Fig. 6 shows a snapshot of this process.

P MY_COUNTER - [D/VLS|_2015/FPGA_INTRO_LEC/DEMO_PJT/MY_COUNTER/MY_COUNTER xpr] - Vivado 2015.1 =|e| x|
He i Fow Took Vindow Lamut Vew beo
b ReXLle foul %% Ready
Fow Nevigator « | Project Manager -MY_COUNTER
), T W Sou —ow o
2[5
4 Project Manager
@ Projec setings
¥ Language Tempiates
+ P tegstor
+ Semition
@) Semulation Settrgs
 RTLvaiyss
6} Hoborstion Seting: < " 2 . -
) “ieee Hierarchy | Lirares | Compie Qrder Clocking Wizard (5.1) [
& sources | Tenplates |
4 Syniheds 0 Documeniation [P Location £ Swich to Defadts
P Propertes -ou
Syrihess et
i — 5] esouce Companent Hame |ck_vez_5
> -
{F Cloching Wizerd] show dmsied s Clacing Options. " Output Clocks | MACH Setings | Porl Renaning | Summary
Vesone 8.4 Fev. 6 - The phase is cacuiated relative 10 the actve Aout dod.
4 Inglementaton Output Freq (Hitz) Phase (degrees) Duty Cyele (%) use
nterfaces: AXI4 ores
@ Inclemertoton setpngs || 1o M Ouptcock pomuested Actual Requested Actual Requested Actual Fine §
Descrpton: The Clocking Wizard reates an HOL fe (verlog or
VHOL) that contang & dockng Orat ustomzed ta Wdcotl [100.000 100.000 0.000 o0 0.000 500 e
clading requremerts
o |mow 0000 0.0 0000 0.000 20 B
4 Program and Debug di_outs 100.000 0.000 0.000 G
» 100.000 0.000 50.000 B
100.000 0.000 0.000 s
100.000 0.000 .000 BurG 8
Godking Feedback =
source i
ool bimemad Output Clock Sequence Mumber N
ih_ ansts_t Neotstarted L) ® automase Contel On-Chp o
< mpi_1 conatrs L Notstared [3 Autmase Contral OF Chip <
1
i User-Contrabed On-Cho
N 4 User Conitraled GFf-Chip
i 1
“ 1
< = Concel
5 T Cormole | 5 Messoges | 5 Log | 1 Repurts, > Design AY
= e = G Y e ; " B iz
m A . - I G
CEle=Tol-Tealel JTETE] o] £)7 DD i

Figure 6: Generating a Clocking IP

Once the generation is complete, you will no longer see a ? mark under the “my_clock_gen” instance
name. You are not ready to launch the simulation. Click on “Run Simulation” in the “Flow Navigator”.
Make sure that “counter_testbench” is the top level in your simulation sources.

Examine the “log” window in at the bottom to see if there are any errors or warnings. If simulation is
successful, the simulator is launched and you can see some signals in the waveform viewer. You can

choose additional signals to debug by clicking on the corresponding module instance name, then the
signal and right-click-> add to waveform window.

Run the simulation for 22us by typing run 22us in the “Tcl Console” at the bottom. You can zoom in

zoom out using the tools in the waveform viewer.

Fig. 7. Shows a snapshot of the simulation

Once you are satisfied with the simulation behaviour, you can “Run Synthesis”. Make sure you keep
an eye on the “log” window to see the messages that appear during synthesis. You can always view

Reports by using the Reports tab at the bottom as shown in Fig. 8.

Choose additional
Signals here

Td Console | Messages |

L Aav_AMIT/pCRRD FilA® [WEX/DUILGICTATER/ UL, 1/COnTinIous/ 2015042718524 5/ANEA VL 3T/ UNL IR, PrARLTVE/ NACHED_ADV . vBA

- BB w

Reports

LA, Mame

= | B synthesis

i Eesynth_1

5 Vivado Synthesis Report
5 Utilization Report
=I-Out-of-Context Module Runs

: +-dk_wiz_0_synth_1
—I-Implementation

‘Place Design [p

=I"Route Design

= Td Consale Messages

View
Messages;
Infors;
Warning;
erors at
different
stages

(E Log

Wiew
Run logs

20150908

Figure 7: Simulation window

Modified Size GUI Repaort

9/5/15 3:02 PM
9/5f15 3:02 PM

15.4 KB
6.8 KB

5| Reports | 3 Design Runs

™~

Examine design run
status by clicking here

Examine all
reports here

Figure 8: Logs and Messages Viewer

Once synthesis is complete, you can “Open Synthesized Design” and examine the various menus such
as creating additional constraints, viewing the schematic etc.

“Run Implementation” when you are ready and wait for implementation to finish. It is very important
to make sure that the design constraints are met when implementation ends. Keep an eye on the
“log” window and look at the “Messages” to understand any Warning and Errors that you might
encounter. Once Implementation is complete, you can click on “Open Implemented Design” to
examine the actual mapping of your design onto FPGA resources, review timing reports and also to
examine clock interaction if your design has multiple clocks. The implemented design for the counter
is shown in Fig. 9.

Az =E < 5B
3 impl_t 30 my_counter Al =
@ RooT 5 Nets (6
Ctri+E
CtrisU
Floorplanning

Select Leaf Cells Ctrl+ShifteS

il loca & iighiight Leaf Cels
[o UnhichightLeafcels

Ctrl+M
Ctrl+Shift+M
Fix Cells
Unfix Cells

[Physical Constr.. | & Device Constraints
Cell Propertes _owex 4 # schematic [
« > i

T Show Herarchy F6
unt_reg[11] (FOCE

[mmem_adv_inst

eq[12]

Name: my_dock_gen/Uo/mmem_adv_i
l_count_req(12]

U
U
O
O
=
=
O
O
(=]
o
o
(=}
O

Parent: [l my_clock_gen/u0 i local_count_reg[13]
Reference name: MMCME2_ADV al_count_reg[14]

. al_count_reg[15]
Type: Clock eqie]
BEL: B wcvEz ADY | [Fine el 16]

reg(1!

Site: (5] MMCME2_ADV_X172 il al_count_reg[18]
me: Mr_ToP L IoWER X il local_count regl 1]

il rst_IBUF inst (5UF

rt_count_IBUF_inst (15UF)

Clock region: X1vz

Number of cell pins: 69

Number of nets: 37

0 (ck_v
Nets
Leaf Cells

General | Properties |Nets | el Pins] f buf (eue

<] >

=] _

Timing - Timing Summary - mpl_1 —ouw

3 Properties | @ ClockRegions & Sources 1] Netlist

2 4| Desion Timng summary

~ »
() Thisisa savedreport X|"| setp Hold Pulse Width
General Information ~

Warst Negative Slack (WNs):
Timer Settings

Total Negative Siack (TNS):

WorstHold Slack (WHS) 0,254 ns Worst Pulse Width Slack (WPWS): 300005
Total Hold Siack (THS): 0,000 15 Total Puise Width Negative Siack (TPWS): 0,000
Clock Summary (4 = Number of Faling Endpoints: 0 Mumber of Faling Endpoints: 0 Number of Faiing Endpoints: o

Check Timing (5 Total Number of Endpoints: 20 Total Number of Endpoints: 20 Total Number of Endpoints: »
#-Intra-Clock Paths

Inter-Clock Paths Al user specified timing constraints are met.

Other Path Groups)

Figure 9: Implemented design

You can zoom in-out from different parts of your design as well as highlight different modules of your
design by right clicking in the netlist view. Examine timing to make sure that both setup and hold
slack are zero or positive. In Fig. 9 the clock generator is highlighted in red and the counter in yellow
along with the pads which are used for output mapping. Note that the router places the design close
to the pads to make routing easier. It is also possible to cross-probe into RTL code to examine which
resource was mapped to which line of your RTL code by choosing the resource in the netlist view,
right clicking and choosing “Go to source”.

Another important window in Vivado is the Project summary window. Here you can get an overview
of all the different stages of your design flow and examine resource utilization as well as get a power
consumption estimate for your design. Fig 10. Shows a snapshot from the project summary window

for the counter design. Make sure that you have no critical warning/DRC errors before you generate
your bit stream. Sometimes, bit stream generation will fail if you have not made sure that the design
constraints and pins are mapped correctly.

£ Project Summary X @i my_counter.wvhd X | @l counter_testbench.vhd X [EY

=
= Project Settings Edit %
g
= Project name: MY_COUNTER

Projectlocation: D:/VLSI_2015/FPGA_INTRO_LEC/DEMO_PIT/MY_COUNTER
Product family: Artix-7
Project part: xc7a100tcsq324-1

Top module name: my_counter

Synthesis % Implementation ES
Status: «f Complete Status: +f Complete

Messages: (D) 5 warnings Messages: No errors or warnings

Active run: gynth 1 Active run: impl 1

Part: xc7al00tcsg324-1 Part: ¥c7a100tcsg324-1

Strategy: Vivado Synthesis Defaults Strateqy: Vivado Implementation Defaults

Incremental compile: None

Summary | Route Status

DRC Violations 2« Timing 2

No DRC violations were found. Worst Negative Slack (WNS): 7,596 ns
Total Negative Slack (TNS): Ons
Number of Faling Endpoints:
Total Number of Endpoints: 20

=

Implemented Timing Report

Setup | Hold Pulse Width

Utilization - Post-Implementation % Power F
Total On-Chip Power: o.211w
FFl 1% Junction Temperature: 26,0 °C
Wi 1% Thermal Margin: 59,0 "C(12,8W)
o{m 3% Effective 0JA: 46 CW
BUFG 6% Power supplied to off-chip devices: 0 W
MMCM 17% Confidence level: Medium
0 25 50 75 100

Utilization (%)

Figure 10: Project summary

Click on “Generate Bitstream” when ready. If bitstream generation is successful a file with the .bit
extension will be created in “YOUR_DESIGN_PATH\PROJECT_NAME\PROJECT_NAME.runs\impl_1"
folder where PROJECT_NAME is the name of your project.

On successful generation of the .bit file, click on “Open Hardware Manager” to launch the hardware
manager to program the FPGA. Make sure that the FPGA is connected to your computer through a
USB cable and that the FPGA is powered on.

When you click on the “Open hardware manger” you will get a promt saying “no hardware is
connected”. Click on “Open Target” followed by “Open a New Target”. Choose “Local Server” as the
FPGA will be connected locally to your machine and click “Next” as shown in Fig.11.

If the FPGA is recognized, a new window showing the name of the FPGA will pop us as shown in
Fig.12. Click “Next” and the hardware manager will open with the FPGA connected to the computer.

Right Click on the FPGA, and choose bit file as shown in Fig. 13. You can now program the FPGA and
verify that your design works on the FPGA.

Hardware Manager - unconnected
(i Mo hardware targetis open. Open target
Hardware — O % | | my_countervhd 3 | & counter_testbench.vhd x|
e = =| B p»E [| D:/MLST_2015/FPGA_INTRO_LEC/DEMO_PIT/MY_COUNTER/MY_COUNTER. sres/sources_1/impor tsfnew/my_counter.vhd
| 65signal locked : std logic:
n 66 3ignal local_count : unsigned (19 downte 0)7
A g7 signal local probe : std logic wector (7 downto 0);
| 68signal local count_val : std logic_vector(3 downto 0);
% 69
T0begin
% 71
¥ | 72
o 73 H
Mo content i 75 -
&l 5 e Hardware Server Settings
= 97 - Select local or remote hardware server, then configure the host name and port settings. Use Local server if ‘
Q 28 el the target s attached to the local machine; otherwise, use Remote server,
. 7% <l
80 -- Connect to: | Local server (target is on local maching) - |
81 ref
82 1o
83):
e84
Properties _ow x| :: -
- 'P k 87—
88 --
89
90 loca|
91
82 prodg
93 begi
94 iff
95
98 el
Select an object to see properties z;
99
100 Click Next to launch andor connect to the hw_server (port 3121) application on the local machine.
101 enf
102 enf
103 end] [<Bed [{THedETT Ecsn | [concel
104

Figure 11: Connect to a hardware target

Select Hardware Target

Select a hardware target from the list of available targets, then set the appropriate JTAG dock (TCK)
frequency. If you do not see the expected devices, decrease the freguency or select a different target.

Hardware Targets

Type Mame JTAG Clock Freguency
Digilent,/2 102745322454 |1 0

xilinx_tcf

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

Mame ID Code IR Length
@ xc7a100t_0 13531093 &

Hardware server: localhost: 3121

<Badk | HNext> | Fnsh | | Cancel

Figure 12: FPGA connected

=

File Edit Flow Tools Window Layout View Help

l‘j’ E‘Ilﬂ (5 H_% . Xl%“ﬁ |§Deﬁ:ultLath

+| # % %, | & Dashboard v | &)

Hardware Manager - localhost/xilinx_tcf/Digilent/2 102745322454

@ There are no debug cores. Program device Refresh device

Hardware —_ O e =
AT =E % M»E

MName Status

E- B localhost (1) Connected

B xilinx_tcf/Digilent/2102745322454 (1) Open

% XADC (System Monitor)

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug
probes file that corresponds to the debug cores contained in the bitstream programming file.

Bitstream file: | FPGA_INTRO_LEC/DEMO_PIT/MY_COUNTER,MY_COUNTER..runs/impl_1jmy_counter.bit [|

Debug probes file: |

[] Enable end of startup check

1) R SRS | SRS S —"

Figure 13: Choose and program bit file

