f el T\
</v | &% =
3 =
2\ W7y)2
O\l ==

@ Y
‘5’{ 1666 \’\‘9
Os g1y

UNIVERSITY

EITF35: Introduction to Structured
VLSI Design

Part 4.2.1: Learn More ...

Liang Liu
liang.liu@eit.lth.se

1 Lund University / EITF35/ Liang Liu 2015

Outline

C0Crossing clock domain

[OReset, synchronous or asynchronous?

2 Lund University / EITF35/ Liang Liu 2015

OWhy two DFFs?

3 Lund University / EITF35/ Liang Liu 2015

Crossing clock domain

CIMultiple clock is needed in case:
*Inherent system requirement
CIDifferent clocks for sampling and processing
*Chip size limitation
CIClock skew increases with the # FFs in a system

Lund University / EITF35/ Liang Liu 2015

5

Multiple Clocks: Problems

COWe have been setting very strict rules to make our digital
circuits safe: using a forbidden zone in both voltage and time

dimensions

Digital Values: distinguishing Digital Time: setup and hold time
voltages representing “1” from “0” rules
t: .
a:—:H:—:-|
D .
Clk
Q
>
o
t
PD

Lund University / EITF35/ Liang Liu 2015

Metastability

COOWith asynchronous inputs, we have to break the rules: we
cannot guarantee that setup and hold time requirements are met

at the inputs!
COWhat happens after timing violation?

Tsatup +Thuld

clk . Clk

6 Lund University / EITF35/ Liang Liu 2015

Metastability in Digital Logic

V4 Lund University / EITF35/ Liang Liu 2015

Mechanical Metastability

ClLaunch agolf up ahill, 3
possible outcomes:

*Hit lightly: Rolls back
*Hit hard: Goes over
*Or: Stalls at the apex

CThat last outcome is not
stable:

*A gust of wind
*Brownian motion

«Can you tell the eventual
state?

State A State B

8 Lund University / EITF35/ Liang Liu 2015

Metastability in Digital Logic

CIOur hill is related to the VTC (Voltage Transfer Curve).
* The higher the gain thru the transition region
* The steeper the peak of the hill
« The harder to get into a metastable state.

COWe can decrease the probability of getting into the metastable
state, but we can’t eliminate it...

Vou;\

0 Lund University / EITF35/ Liang Liu 2015

Metastability in Digital Logic

CIFixed clock edge
COChange the edge of
Inputs

COThe input edge is moved
In steps of 100ps and 1ps

COThe behavior of outputs
*‘Three’ possible states
*Will exit metastability

How long it
takes to exit
Metastability?

10 Lund University / EITF35/ Liang Liu 2015

Exit Metastability

CIDefine a fixed-point voltage, Vy, (always have) such that V\y = Vum
implies Vout = Vwm
CIAssume the device is sampling at some voltage Vo near Vu

CIThe time to settle to a stable value depends on (Vo -Vy); its
theoretically infinite for Vo = Vu

\'

ou;h

11 Lund University / EITF35/ Liang Liu 2015

Exit Metastability

CThe time to exit metastability depends logarithmically on (Vo -Vw)
OThe probability of remaining metastable at time Tis g -1/t

10

Voltage —

- e
0
- » A
04 1 ~
02 4 N

T S
00 . : B
o 2 i] B 10 12 14 18

Q 2 12 16

B N il

i

Time (ns)

12 Lund University / EITF35/ Liang Liu 2015

MTBF: The probability of being metastable at time S?

COTwo conditions have to be met concurrently
An FF enters the metastable state
An FF cannot resolve the metastable condition within S

OThe rate of failure p(failure) = p(enter MS)x p(time to exit >)

-S
Rate(failures) =T, F F, xe %

*T,y: time window around sampling edge incurring metastability

*F.: clock rate (assuming data change is uniformly distributed)

*F,: input change rate (input may not change every cycle)
CIMean time between failures (MTBF)

S
o
Iy oIy,

MITBF =

13 Lund University / EITF35/ Liang Liu 2015

MTBF (Mean Time Between Failure)

ClLet’s calculate an ASIC for 28nm CMOS process
*t: 10ps (different FFs have different 1)
*T\w=20ps, F=1GHz
-Data changes every ten clock cycles
Allow 1 clock cycle to resolve metastability, S=T-

MTBF=4x10%° year !

[For comparison:
Age of oldest hominid fossil: 5x10°years
Age of earth: 5x10°years]

14 Lund University / EITF35/ Liang Liu 2015

The Two-Flip-Flop Synchronizer

Asynchronous input

/ FF1 FF2

Da D o) D Q ~Ds ?

l—> >
CLK
\ Synchronized signal

Global low-skew clock

S=Tc

15 Lund University / EITF35/ Liang Liu 2015

The Two-Flip-Flop Synchronizer

CdPossible Outcomes

ASYNCHRONOUS
NPUT —»|p1 Qf—»2 @}

FF1 FF2

CLOCK

clock /@) 2
D1
Q1 |/
Q2

16 Lund University / EITF35/ Liang Liu 2015

The Two-Flip-Flop Synchronizer

CdPossible Outcomes

ﬁ:ﬁ?mmus —»|D1 QpP—®»D2 Qf—»
FF FF2
A A
CLOCK
clock_ [/D__[@__/[®3®\ [D_[@ 3

Q2

Open Question: What is the limitation?

17 Lund University / EITF35/ Liang Liu 2015

The Two-Flip-Flop Synchronizer

CProblems

«Just ensures that the receiving system does not enter a metastable
state

*Not guarantee the “function” of the received signal

ClUncertainty Remains: Q2 goes high either one or two cycles later
than the input

*D1 mush stay high for at least two cycles.

*How about data bus (multiple bits) crossing clock domain?

C0Some bits may pass through the synchronizer after one cycle while
others may take two cycles.

ASYNCHRONOUS
NPUT —»|p1 Qif—|p2 @p}—>

FF1 FF2

CLOCK

18 Lund University / EITF35/ Liang Liu 2015

A Complete Synchronizer

Req |
VAN | WaN

| >
SENDER RECEIVER

1 H e

Al LA
Ack

\ |

sender receiver
clock clock

COThe sender place data on the bus

COThe sender sends Req, Req gets synchronized by the top
synchronization circuits

C0The receiver gets data and sends back ACK

allowed to start a new cycle again.

19 Lund University / EITF35/ Liang Liu 2015

FIFO

O FIFO (first in first out) Buffer
- “Elastic” storage between two subsystems

Writing System Reading System
r ———————————— 1 r------------ﬂ
I I | I
| Clock —o }; | | |
I I I I
| = |
I I =T T | I
| —]Q D 4[4— FULL EMPTY —p_l |
I I I I
I) I I I
| j—» WRCLK RDCLK {4—] |
I — I I I
S — - . <
FIFO buffer
- q:lr r
ll'h, data written data read
into FIFO from FIFO

20 Lund University / EITF35/ Liang Liu 2015

Circular FIFO

COHow to Implement a FIFO?
 Circular queue implementation
« Use two pointers and a “generic storage”

CIWrite pointer: point to the empty slot before the head of the
queue

C0Read pointer: point to the tail of the queue

Head (extract)

O
U
.
E
e
)
=

"First in? First out!"
21

Lund University / EITF35/ Liang Liu 2015

Circular FIFO rdptr

- 1d ptr

oN

(c). 4more writes

Wr ptr

22 Lund University / EITF35/ Liang Liu 2015

FIFO Implementation

p fifo data out

fifo data in p W _data r data0
1 Overall Architecture — »lw addr r addrd
-Storage Elements register file
[OReg. file >
*FIFO Controller
CORead and write
pointers: 2 counters w addr r addr
OStatus circuit: wr)| ol wr rd
full, empty ol < ! all empty
S : FIFO
reset —p controller

23 Lund University / EITF35/ Liang Liu 2015

FIFO Implementation: Controller

0 Augmented binary counter: 888(1)
* Increase the counter by 1 bits 0011
* Use LSBs for as register address 0010
« Use MSB to distinguish full or empty 0110

0111
. : . : 0101
Write pointer Read pointer Operation Status 0100
0 000 0 000 mitialization empty 1100
0111 0 000 after 7 writes 1101
1 000 0 000 after | write full 1111
1 000 0100 after 4 reads 1110
1 100 0100 after 4 writes full 1010
1 100 1011 after 7 reads o
1 100 1 100 after 1 read empty 1000
0011 1 100 after 7 writes
0 100 1 100 after | wnite full
0 100 0 100 after 8 reads empty

24 Lund University / EITF35/ Liang Liu 2015

A Complete Synchronizer

. ke ren
I Read Pointer [. rolk
Compi| synck i
full— < |
| Dual Ported RAM > data
> empty
.
$ 1_SYNC Com
wclk .] . P
wen :I Write Pointer
Writer's clock domain Reader’s clock domain

CIControl signals are ‘synchronized’, data pass through storage elements

ClAssertion delay, it takes two clock cycles for the control signal passing
through synchronizer

ClUsually available in libraries

COThe key question, how large the RAM should be?
C0“When in doubt, double it”

25 Lund University / EITF35/ Liang Liu 2015

Outline

O

[OReset, synchronous or asynchronous?

26 Lund University / EITF35/ Liang Liu 2015

Reset Design Strategy

ClForce the SoC into a known state for stable operations

Clin general, every flip-flop in an SoC (ASIC) should be resetable
whether or not it is required by the system

COReset might be eliminated for high-performance pipeline FFs

COMany design issues must be considered before choosing a reset
strategy for an ASIC design

?
Synchronous or Asynchronous:

27 Lund University / EITF35/ Liang Liu 2015

General Coding Style: FFs

C0Coding for synchronous and asynchronous reset

architecture rtl of goodFFstyle is

signal g1 : std_logic; architecture rtl of goodFFstyle is
begin signal q1 : std_logic;
process (clk, rst_n) begin
begin process (clk)
iIf (clk'event and clk ='1") then begin
if (rst_ n="0") then If (clk'event and clk ='1") then
gl <="'0" if (rst_n="0") then
else gl <="'0"
gl <=d; else
end if; gl <=d;
end if; end if;
end process; end if;
end rtl; end process;

end rtl;

28 Lund University / EITF35/ Liang Liu 2015

Synchronous vs. Asynchronous Reset

CLK
RESET
Q (

CLK

ASYNCH
RESET

RESET

SYNCH RESET
‘/""
,\\J

29 Lund University / EITF35/ Liang Liu 2015

Synchronous vs. Asynchronous Reset

[080% designs using synchronous reset (investigation by
Sunburst Design, Inc)

C0“we all know that the best way to do resets in an ASIC is to
strictly use synchronous resets”

C0“asynchronous resets are bad and should be avoided”

OThere are both advantages and disadvantages to using either
synchronous or asynchronous resets.

OThe designer must use an approach that is appropriate for
the design.

30 Lund University / EITF35/ Liang Liu 2015

Synchronous Reset

reset is not part of the sensitivity list. 9
architecture rtl of ctr8sr is
signal count : std_logic_vector (8 downto 0); ’ b
begin rst_n | o
co <= count(8) ; '
g <= count(7 downto 0); Synchronous rst _n
(added path delay)
process (clk) i
begin clk -
if (elk'event and elk = '1') then [
if (rst n = '0') then
count <= (others => '0") ; -—- sync reset
elsif (1d = '"1l') then
count <= '0' & d; -- synec load
else
count <= count + 1; -—- sync increment
end if;
end if;
eng“itﬁf“m' reset is part of the input path

31 Lund University / EITF35/ Liang Liu 2015

Synchronous Reset: one problem

C0Synthesis tool may not easily distinguish the reset signal from

any other data signal
COThe synthesis tool could alternatively have produced the circuit

CIf synthesis tool can distinguish reset, it will put reset as close
to FFs as possible

out 0
out
D Q D Q
rst_n — 1
in
>
b

clk Synchronous rst_n
'} (Added path delay) clk

What ... If ‘load=X’
Only a problem in simulation

32 Lund University / EITF35/ Liang Liu 2015

Synchronous Reset

OAdvantage
*Generally insure that the circuit is 100% synchronous.
*Will synthesize to smaller flip-flops

*Ensure that reset can only occur at an active clock edge. The clock works
as a filter for small reset glitches.

ODisadvantage

*May need a pulse stretcher to guarantee a reset pulse width wide
enough to ensure reset is present during an active edge of the clock

*Will require a clock in order to reset the circuit, e.g., if you have a gated
clock to save power, the clock may be disabled

33 Lund University / EITF35/ Liang Liu 2015

Asynchronous Reset

reset is part of the sensitivity list.

architecture rtl of asyncresetFFstyle is
begin
process (clk, rst n)
begin
if (rst_n = '0"') then
q <= '0',‘
elsif (clk'event and clk = 'l') then
0 q <= d;
D Q—ef end if;
1 end process;
end rtl;

load %

rst_n

clk

ASYI'lChI’OI'IOUS rst_ n
(No additional path delay)

reset is not part of the input path

34 Lund University / EITF35/ Liang Liu 2015

Asynchronous Reset

OAdvantage

*The data path is guaranteed to be clean

[designs that are pushing the limit for data path timing, cannot afford to
have added gates and additional net delays in the data path due to
synchronous resets

*The most obvious advantage favoring asynchronous resets is that the
circuit can be reset with or without a clock present

ODisadvantage

*If the asynchronous reset is released at or near the active clock edge
of a flip-flop, the output of the flip-flop could go metastable and thus the
reset state of the SoC could be lost.

*Spurious resets due to noise or glitches on the board or system reset

Q~reg0

data (VCC) [
clk (VCC) IS

reset (VCC)Lo

35 Lund University / EITF35/ Liang Liu 2015

Reset Timing

36 Lund University / EITF35/ Liang Liu 2015

Reset Removal Problem

COReset recovery time:
*Time between when reset is de-asserted and the time that the clock
signal goes high again.
*Synchronous reset, both the leading and trailing edges of the reset
must be away from the active edge of the clock.

Clock
Reset at \
Device Pin 1
—b» Setup Time
Reset at ;
Flip-Flops

A B C

WP272_02_010708

Active high reset
37 Lund University / EITF35/ Liang Liu 2015

38

Reset Removal Problem

[CDReset removal traversing different clock cycles
CICause some registers or flip-flops to exit the reset state before others
[COReset Buffer Tree

tpd l!:rec

P
rst_nis l -
asynchronous :D
to clk '

\

clk

rst_n

N

Lund University / EITF35/ Liang Liu 2015

Reset Removal Problem

[CDReset removal traversing different clock cycles
CICause some registers or flip-flops to exit the reset state before others
ClEspecially for high-rate clock and big chip
[COReset Buffer Tree

Clock |

Reset at
Device Pin

Reset at EEEEEE\EEEEEEEEE:EEEE:EEEEEEEE&EE:
Flip-Flops

WP272_03_010708

Figure 3. Reset Timing Diagram - High Clock Rate

Active high reset
39 Lund University / EITF35/ Liang Liu 2015

But... Does it really matter?

C0Single pipeline stage?
- After a few cycles, the entire pipeline will be operational
* Any incorrect data will be flushed out of the system
+ In fact, there is little point in having a reset at all

out

WP272_04_010708

Figure 4: Reset for a Pipeline

40 Lund University / EITF35/ Liang Liu 2015

But... Does it really matter?

ClParallel pipeline

D, o Euncton-] " HGuncton{ "HGuncton{ T——Q..
) % >)

Reset

D, o TGuncton)] " Eunction){ " Euncton){ 1—b,,
> D > >

Reset

CIPipeline with feedback

State 1 State 2 State 3 State 4

AR P B

0 ‘0 ~|? | 0

Reset

WP272 05 010708

41 Lund University / EITF35/ Liang Liu 2015

Reset Synchronizer

CJAn external reset signal asynchronously resets a pair of master reset
flip-flops, which in turn drive the master reset signal asynchronously

CITake advantage of the best of both asynchronous and synchronous
reset styles.

CTakes two rising clock edges after reset removal to synchronize
removal of the master reset.

CONo metastability problems on the second flip-flop when reset is

removed
D >
Voo ~

masterrst_n Ve >

D Q D Q > 3

D >

D % > .

(i) Reset distribution
clk N buffer tree _—

L~ I
rst n N l

L
Active low reset

42 Lund University / EITF35/ Liang Liu 2015

Reset Glitch Filter

CJAny input wide enough to meet the minimum reset pulse width for a
flip-flop will cause the flip-flop to reset

D >
Vce
N .
masterrst n L~ >
D Q D Q > =
D‘ >
D D > .
? Reset distribution
clk N buffer tree
L
rst n N l
L~

Active low reset

43 Lund University / EITF35/ Liang Liu 2015

Reset Glitch Filter

CJAny input wide enough to meet the minimum reset pulse width for a
flip-flop will cause the flip-flop to reset

ClDelay line:
*Vendors provide a delay hard macro that can be hand instantiated
Instantiate a slow buffer in a module

.

IISGIH!:I'D @ela}'«e&) _{ Reset
P “ S
) ._;'{ ’ 4

rSt_n I'"IL—'_,'_I..- ‘I y FA' .1"'# .:_,.f:.." V

4 ;o cc [

rst_dly n i Jfa /f | master rst n —>—
— —_ Yo L | .'I .

Y= D Q D Q Il >
|III ;'__."' I.'_ -'

final rst n | / —
> > [

r 0 |‘ Reset distribution

clk } - T buffer tree

e,
s
.

: rst diy n___ :
rst ,-,5 T, final_rst_n
: ¥ ;

- Filtered
_ Reset

Active low reset
44 Lund University / EITF35/ Liang Liu 2015

Xilinx Reset

One of the commandments of digital design states,
"Thou shalt have a master reset for all flip-flops so
that the test engineer will love you, and your
simulations will not remain undefined for time
eternal.”

So, some may be surprised to learn that applying a
global reset to your FPGA designs is not a very good
idea and should be avoided. Clearly, this is a
controversial issue, so let's take a look at the reasons
why such a design policy should be considered.

45 Lund University / EITF35/ Liang Liu 2015

Xilinx Reset: covering 99.99% of cases

Clinitialization after configuration (power-on reset)
* Has the same effect as a global reset
- It also initializes all RAM cells

- All program and data areas are defined even before the processor
executes the first instruction

FPGA Foc
RAM _
— 00101110 —y
St
? 1%1 FDP ..,
01001101 || |
RESET 00110101 _V

WP272_06_010708

Figure 6: FPGA Configuration

46 Lund University / EITF35/ Liang Liu 2015

Xilinx Reset: Strategy for the 0.01% of Cases

FDR FDR
Asynchronous_Reset D D
> |
TFDP TFDP TFDP FDP Synchronous
D D D D * L--- Localized

— Reset_signal

l’> [> I> I> (Low Fan-Out)
Clock *—o

WP272_07_010708

4/ Lund University / EITF35/ Liang Liu 2015

Reference Readings

Simulation and Synthesis Techniques for Asynchronous
FIFO Design

“Synchronous Resets? Asynchronous Resets? | am so
confused! How will | ever know which to use?”

Get Smart About Reset: Think Local, Not Global
http://www.xilinx.com/support/documentation/white_pa
pers/wp272.pdf

Get your Priorities Right — Make your Design Up to 50% Smaller
http://www.xilinx.com/support/documentation/white_papers/wp275.

48 Lund University / EITF35/ Liang Liu 2015

Lecture

J No lecture tomorrow
] Sept. 28" Monday (8.15-10.00)

Design for Test (DFT)

Erik Larsson
Associate Professor

lgor Tasevski

ERICSSON

49 Lund University / EITF35/ Liang Liu 2015

