

Outline

- Electronics
- Test generation
 - Creation of tests
- Design-for-test
 - Design modifications to ease test

Motivation

Computers everywhere....

And inside there is electronics

Electronics

Number of transistors

Definitions

- Design synthesis: Given an I/O function, develop a procedure to manufacture a device using known materials and processes.
- Verification: Predictive analysis to ensure that the synthesized design, when manufactured, will perform the given I/O function.
- Test: A manufacturing step that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defect.

Verification vs. test

- Verifies correctness of design.
- Performed by simulation, hardware emulation, or formal methods.
- Performed once prior to manufacturing.
- Responsible for quality of design.

- Verifies correctness of manufactured hardware.
- Two-part process:
 - Test generation: software process executed once during design
 - Test application: electrical tests applied to hardware
- Test application performed on every manufactured device
- Responsible for quality of devices.

Cost per transistor

Beth Martin, Addressing Moore's Law with the First Law of Real Estate: Location, location, location, 08-02-2015, SemiWiki.com

LUNDS UNIVERSITET

- The cost to set up a modern 45 nm process is \$200–500 million
- The purchase price of a photomask can range from \$1,000 to \$100,000 for a single mask.
- As many as 30 masks (of varying price) may be required to form a complete mask set.

• Straight forward:

• Corrective modifications:

How flat is a road?

How straight is a line in an IC?

• At a distance

Examples of defects

Particles	Litho	CMP	Resist		
& Defects	Pinching	Bridging	Collapse		

Figure 3 Both feature-related and particle defects cause a chip to fail.

Via Stress

Fig. 1. With "tombstoning" only one side of a two-leaded chip component may be soldered to the target pad, but its other termination may not come in contact with the associated target pad. Photo courtesy of IPC-610

Yield

- Yield is good devices over produced devices
- Perfect manufacturing results in 100% yield
 - No need of test!

Layers	Wafer cost	Defect/cm ²	Area (mm ²)	Dies/Wafer	Yield	Die Cost
2	\$900	1.0	43	360	71%	\$4
3	\$1200	1.0	81	181	54%	\$12
4	\$1700	1.3	121	115	28%	\$53
3	\$1300	1.0	196	66	27%	\$73
3	\$1500	1.2	234	53	19%	\$149
3	\$1700	1.6	256	48	13%	\$27 2
3	\$1500	1.5	296	40	9%	.u \$413
	Layers 2 3 4 3 3 3 3 3 3	LayersWafer cost2\$9003\$12004\$17003\$13003\$15003\$17003\$1500	LayersWafer costDefect/cm²2\$9001.03\$12001.04\$17001.33\$13001.03\$15001.23\$17001.63\$15001.5	LayersWafer costDefect/cm2Area (mm2)2\$9001.0433\$12001.0814\$17001.31213\$13001.01963\$15001.22343\$17001.62563\$15001.5296	LayersWafer costDefect/cm2Area (mm2)Dies/Wafer2\$9001.0433603\$12001.0811814\$17001.31211153\$13001.0196663\$15001.2234533\$17001.6256483\$15001.529640	LayersWafer costDefect/cm2Area (mm2)Dies/WaferYield2\$9001.04336071%3\$12001.08118154%4\$17001.312111528%3\$13001.01966627%3\$15001.22345319%3\$17001.62564813%3\$15001.5296409%

Yield over time

Challenge: test vs. diagnosis

- Each seat in a football stadium is a chip to be sold
- The test challenge is to tell if there is a bug on any of the seats
- The diagnosis challenge is for a given seat to tell where the bug is

Outcome of test

- Good IC that pass the test -> OK
- Bad IC that fail the test -> OK
- Bad IC that pass the test -> test escape (lose costumer confidence)
- Good IC that pass the test yield loss thrown away (lose money)

//this chip is sold//this chip is not sold

//a bad chip is sold

//a good chip is

		Outcome of test	
		Pass	Fail
Status of IC	Good	OK	Yield loss
	Bad	Test escape	OK

Test escape and yield

- Assume 2 million ICs manufactured with yield 50%
 - 1 million GOOD shipped
 - 1 million BAD shipped
- Target DPPM (Defective parts per million) = 100
- For 100 BAD parts in 1 million shipped (DPPM=100)
 - Test must detect 999900 out of all the 1000000 BAD

» Test coverage: 99.99% (999900/1000000)

DPPM and yield

- Consider 1 Million parts. Assume test coverage: 99.99% (100 escapes per million defective)
- DPPM @ 50% yield = 100
- DPPM @ 10% yield
 - » 0.1 million GOOD -> shipped
 - » 0.9 million BAD -> 90 test escapes (900000*(100%-99.99%))

DPPM = 90/0.1=900

- DPPM @90% yield
 - » 0.9 million GOOD -> shipped

» 0.1 million BAD -> 10 test escapes (100000*(100%-99.99%))

DPPM=10/0.9=11

Cost of test

- Diagnosis: enough information to pinpoint root cause of defects
- Pass/fail: enough information to determine if a device is good or bad ^{Yield}

Outline

- Electronics
- Test generation
 - Creation of tests
- Design-for-test
 - Design modifications to ease test

Testing basics

- Functional Tests: Exercise the circuit in "mission mode"
 - Expensive to develop

» no effectiveness measure

- Today mostly used to evaluate speed
- Structural Tests: Target "modeled" faults
 - Scan stuck-at tests: low cost, effective DC tests
 - Transition Delay Faults (TDF) tests now widely used

Perfect test vs. real test

- Perfect test:
 - Detects all defects
 - Pass all functionally good devices
- Real test:
 - Based on analyzable fault models
 - Some good chips are rejected (yield loss)
 - Some bad chips pass test (test escape)

Objective of test generation

- Specify the test vector
- Determine correct response (expected response)
- Evaluate cost of test (# patterns related to cost)
- Evaluate quality of test
- Fault coverage = No of faults detected / No. faults modeled

Defects, faults and fault models

- Example: assume a break system in a car
- A <u>defect</u> is if there is weak joint in the brake fluid pipe (could be due to manufacturing mistake)
- A <u>fault</u> is if the weak joint break (but still you could drive the car and there is no problem unless you break)
- A <u>failure</u> is when you there is a fault in the braking system and you break.

Defects, faults and fault models

- Real defects too numerous and often not analyzable
- A fault model
 - identifies targets for testing
 - makes analysis possible
- A defect manifests itself as a fault
- A fault is modeled by a fault model
- Example of fault models:
 - Stuck-at Fault, Bridging Fault, Shorts (Resistive shorts), Opens, Delay Faults, Transient Fault

Fault classes

- Faults/defects detected by single vector tests
 - Stuck-at, bridging faults, many open defects
 - High ATPG coverage (stuck-at, bridging, N-detect tests)
- Faults/defects requiring two-pattern tests
 - Timing defects, some opens defects
 - 1-3% of all failing parts need two-pattern tests
 - Moderate test coverage

Defects, faults and fault models

• Example of a defect:

• Example of a fault model:

- A defect manifests itself as a fault
- A fault is modeled with a fault model

Exhaustive tests

- Try all possible alternatives
- For a 2-input design, 2²(4) vectors are needed:

- For a 30-input design, 2³⁰ (1073741824) vectors are needed
- If we apply 1 vector per second, it will take 34 years to test the circuit (2³⁰/(60*60*24*365)=34)

Test generation

- Example: create a test for the output connected to Vdd
- Requirement: response from fault-free case must be different from faulty case

- Test pattern: test vector + expected test response
- Produced test response is compared against expected test response

Test application

General scheme for test generation

While fault coverage < desired limit { Select an uncovered fault f Generate test for the fault f Evaluate fault coverage

}

Single stuck-at fault

- A basic ATPG (automatic test-pattern generation) algorithm
 - activate one fault at a time
 - work backward from the fault origin to the PIs (primary inputs)
 - work forward from the fault origin to a PO (primary output)
 - work backward from the PO to the Pis to generate the sensitized path.

Single stuck-at fault

- One line at the time is fixed to logic value 0 (stuck-at-0) or 1 (stuck-at-1)
- For the stuck-at fault model there are for a circuit with n lines
 2*n possible faults
 G3

- Quality of a test is given by: fault coverage = faults detected / total number of faults
- Example: 12 lines (24 faults) detect 15 faults: f.c.=15/24 (63%)

Fault collapsing

- Value fault free/faulty (v/vf)
- Stuck-at 0 on a: a=1/0, b=1 -> z=1/0 //vector (stimulus) 11
 Stuck-at 0 on b: b=1/0, a=1 -> z=1/0 //vector (stimulus) 11
 Stuck-at 0 on z: b=1, a=1 -> z=1/0 //vector (stimulus) 11
 Stuck-at 1 on a: a=0/1, b=1 -> z=0/1 //vector (stimulus) 01
 Stuck-at 1 on b: a=0/1, b=1 -> z=0/1 //vector (stimulus) 10
- Stuck-at 1 on z: a=0, b=x -> z=0/1

//vector (stimulus) 0x or x0

Equivalence rules

Fault simulation

- Given
 - A circuit
 - A sequence of test vectors
 - A fault model
- Determine
 - Fault coverage fraction (or percentage) of modeled faults detected by test vectors
 - Set of undetected faults
- Motivation
 - Determine test quality and in turn product quality
 - Find undetected fault targets to improve tests

Test compaction

- ATPG generates too many vectors; faults are covered by several vectors
- Static test set compaction tries to remove vectors after the use of ATPG
- Dynamic test tries to remove vectors during ATPG

	f ₁	f ₂	f ₃	f ₄	f ₅	f ₆	f ₇
v ₁	X		X		X		
V ₂						X	x
V ₃	X				X		х
V ₄		X	X	X	X		

Commercial ATPG tools

- Commercial ATPG tools are
 - for combinational circuits
 - make use of a random test generation for 60-80% of the faults (easy to detect) and deterministic test generation for the remaining part (hard to detect)
- Examples of commercial ATPG tools:
 - Encounter Test Cadence
 - TetraMax Synopsis
 - FastScan, FlexTest Mentor Graphics

Outline

- Electronics
- Test generation
 - Creation of tests
- Design-for-test
 - Design modifications to ease test
 - » Test points
 - » Scan
 - » Built-In Self-Test
 - » IEEE 1149.1 (Boundary scan (JTAG))

Test point insertion

- Add a test point to ease test generation
- Access to chip internal is only through pins

Test point insertion

.

- Problem: ATPG works for combinational logic while most ICs are sequential
- Solution: Provide a test mode in which flip flops can be accessed directly
- Registers (FFs) provide virtual primary inputs/primary outputs

- 1. Write flip flops
- 2. Stimulus at inputs
- 3. Normal cycle launch/capture
- 4. Observe output
- 5. Read flip flops

- Replace flip flop (FF) with scan flip flop (SFF): extra multiplexer on data input
- Connect SFFs to form one or more scan chains
- Connect multiplexer control signal to scan enable

LUNDS UNIVERSITET

Scan application

- Scan Benefits
 - Automatic scan insertion
 - ATPG
 - High fault coverage
 - Short test development time
- EDA tools
 - For scan insertion
 - Partial scan selection
 - Scan stiching

- Scan Costs
 - Silicon area
 - » Mux, scan chain, scan enable
 - Performance reduction
 - » Multiplexer in time-critical path
 - IC pins
 - » Scan-in (SI), scan-out (SO), scan_enable (SE)
 - Test time
 - » Serial shifting is slow

Outline

- Electronics
- Test generation
 - Creation of tests
- Design-for-test
 - Design modifications to ease test
 - » Test points
 - » Scan
 - » Built-In Self-Test
 - » IEEE 1149.1 (Boundary scan (JTAG))

Built-In Self-Test

- Test source where test stimuli are generated/stored
- Test sink where test responses are stored/analyzed

Built-In Self-Test

STUMPS: Self-testing using MISR and parallel shift register sequence generator

Signature Register (MISR)

STUMPS: Self-testing using MISR and parallel shift register sequence generator

Random pattern resistant faults

- The effectivness of a test is given based on the test's fault coverage, length, and hardware/data storage requirement.
- Probability to create a 1 at the output; 1/2ⁿ where n is the number of inputs. n=2; P=0.25, n=4; P=0.0625

Built-In Self-Test

- Difficult to reach high test coverage
- Diagnostic resolution is low
 - Only a MISR signature

Outline

- Electronics
- Test generation
 - Creation of tests
- Design-for-test
 - Design modifications to ease test
 - » Test points
 - » Scan
 - » Built-In Self-Test
 - » IEEE 1149.1 (Boundary scan (JTAG))

Objective

- Given a Printed Circuit Board (PCB) composed of a set of components (ICs) where each component is tested good.
- The main objectives are to ensure that all components are:
 - correct (the desired ICs are selected)
 - mounted correctly at the right place on the board and
 - ensuring that interconnections are functioning according to specification
- Problems that may occur:
 - A component is not placed where it should be,
 - A component is at its place but turned wrongly,
 - A component is correct but the interconnection is not uncertain the interconnection the i

- The Joint European Test Action Group (JETAG), formed in mid-80, became Joint Test Action Group (JTAG) in 1988 and formed the IEEE std. 1149.1.
- The IEEE std. 1149.1 consists of:
 - Test Access Port (TAP)
 - TAP Controller (TAPC),
 - Instruction Register (IR), and
 - Data Registers (DR)

.

- Mandatory
 - Bypass; used to bypassing an IC
 - Extest; tests interconnection between ICs
 - Sample/Preload; used to sample (snapshot) and preload boundary scan during operation
- Optional
 - Intest, Runbist, Clamp, Idcode, Usercode, Highz

Scan and MBIST support with Boundary Scan

LUNDS universitet