
Lund University / EITF35/ Liang Liu 2014

EITF35: Introduction to Structured

VLSI Design

Part 2.2.2: VHDL-3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF35/ Liang Liu 2014

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

2

Lund University / EITF35/ Liang Liu 2014

VHDL code should be clear so that the pre-designed

cells can be inferred

•As an architecture designer, you need to be very familiar with the

available elements

VHDL code of storage elements

•Positive edge-triggered D FF

•Negative edge-triggered D FF

•D FF with asynchronous reset

•D Latch (DON’T USE)

Inference of Basic Storage Elements

3

Lund University / EITF35/ Liang Liu 2014

No else branch

Note the sensitivity list (only clk)

Positive edge-Triggered D FF

4

rising_edge(clk)

Lund University / EITF35/ Liang Liu 2014

Negative edge-Triggered D FF

5

falling_edge(clk
)

Lund University / EITF35/ Liang Liu 2014

D FF with Async. Reset

6

Lund University / EITF35/ Liang Liu 2014

D Latch (Learn How to Avoid)

7

Bad1:
process(sA,sB,a,b)

begin

if sA=’1’ then

z<=a;

elsif sB=’1’ then

z<=b;

end if;

end process Bad1;

a

b

sA sB

z
L

OR

Bad2:
process(sA,a,b)

begin

if sA=’1’ then

f<=a;

end if;

end process Bad2;

Bad3: process(I3,I2,I1,I0,S)

begin -- use case statement

case S is

when "00" => O <= I0;

when "01" => O <= I1;

when "10" => O <= I2;

end case;

end process Bad3;

Lund University / EITF35/ Liang Liu 2014

Exercise

8

c1: process(clk)

begin

if (clk ’event

and clk =‘1’)then

q<=‘1’;

end if;

end process c1;

c2: process(clk)

begin

if (clk

=‘1’)then

q<=‘1’;

end if;

end process c2;

c3: process(clk)

begin

if (clk

=‘1’)then

q<=‘1’;

else

q<=‘0’;

end if;

end process c3;

1

0

clk

q

What is the corresponding circuits?

Lund University / EITF35/ Liang Liu 2014

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

9

Lund University / EITF35/ Liang Liu 2014

Sync Enable

•Means the enable signal is controlled by clock

Design Examples: D FF with sync enable

10

function circuit

Lund University / EITF35/ Liang Liu 2014

architecture two_seg_arch of dff_en is

signal q_reg:std_logic;

signal q_next:std_logic;

begin

-- D FF

process (clk, reset)

begin

if (reset=’l’) then

q_reg <= ‘0’;

elsif (clk’event and c1k=’l’) then

q_reg <= q_next;

end if ;

end process;

-- next-state logic

q_next <= d when en =’l’ else

q_reg;

-- output logic

q <= q_reg;

end two_seg_arch;

Design Examples: D FF with sync enable

11

Multi-Segment

Recommended!

Lund University / EITF35/ Liang Liu 2014

Binary Counter

•Circulates through a sequence that resembles the unsigned binary number

•Count from 0 to 15 and repeat

•Set a flag when counting to 15

Design Examples: Binary Counter

12

Lund University / EITF35/ Liang Liu 2014

entity binary_counter4_pulse is

port(clk, reset: in std_logic;

max_pulse: out std_logic;

q: out std_logic_vector (3 downto 0);

end binary_counter4_pulse ;

architecture two_seg_arch of binary_counter4_pulse is

signal r_reg : unsigned (3 downto 0) ;

signal r_next : unsigned (3 downto 0) ;

process (clk, reset)

begin

if (reset=‘1') then r_reg <= (others=> '0') ;

elsif (clk'event and clk=‘1') then r_reg <= r_next;

end if;

end process;

r_next <= r_reg + 1; -- incrementor

q <= r_reg;

max_pulse <= ‘1' when r_reg= “1111” else‘0’; -- output

end two_seg_arch;

Design Examples: Binary Counter

13

q <= std_logic_vector(r_reg);

Lund University / EITF35/ Liang Liu 2014

Design Examples: Binary Counter

14

How to wrap around: 1111->0000

•Poor code (‘Wrong’ code)

bad:r_next <= (r_reg + 1) mod 16

In the IEEE numeric_std package, “+” on the unsigned data

type is modeled after a hardware adder

Wrap around automatically when the addition result exceeds the

range.

Mod operation may cannot be synthesized

Good:r_next <= (r_reg + 1)

How to wrap if we count from 0 to 9?

Lund University / EITF35/ Liang Liu 2014

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

15

Lund University / EITF35/ Liang Liu 2014

Coding Style: Segment

16

One-segment

•Describe storage and combinational logic in one process

•May appear compact for certain simple circuit

•But it can be error-prone

Is integration

always better???

Lund University / EITF35/ Liang Liu 2014

Segment: D FF with sync enable

17

architecture one_seg_arch of dff_en is

begin

process (clk,reset)

begin

if (reset=’1’) then

q < = ’0’ ;

elsif (clk’event and clk=’1’) then

if (en=’1’) then

q <= d;

end if;

end if ;

end process;

end one_seg_arch;

Lund University / EITF35/ Liang Liu 2014

Segment: Binary Counter

18

What will be

the circuit?

Lund University / EITF35/ Liang Liu 2014

Segment: Binary Counter

19

A 1-bit register is inferred for the max_pulse signal.

The register works as a buffer and delays the output by one

clock cycle,

and thus the max_pulse signal will be asserted when

r_reg="0000".

Lund University / EITF35/ Liang Liu 2014

Segment: Summary

20

Two-segment code

•Separate storage segment from the rest

•Has a clear mapping to hardware component

•Is preferred and recommended

One-segment code

•Mix memory segment and next-state logic/output logic

•Can sometimes be more compact

•No clear hardware mapping

•Error prone

Lund University / EITF35/ Liang Liu 2014

Segment: Summary

21

Keep the hardware and the corresponding coding

rule in mind and then go ahead!

•Signals inside the clk'event and clk=‘1' branch

are referred as registers

Lund University / EITF35/ Liang Liu 2014

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

22

Lund University / EITF35/ Liang Liu 2014

Variables in Sequential Circuit

23

Signals always imply an FF under clk’event and clk=’1’

condition

When you don’t want to infer an FF in a one-segment process

Variable is local in a process and is not needed outside

Variable may imply differently

•Variable is used after it is assigned: get a value every time when the

process is invoked

no register is inferred

•Variable is used before it is assigned: use the value from the previous

process execution

FF or register need to be inferred

Lund University / EITF35/ Liang Liu 2014

Variables in Sequential Circuit: Example

24

architecture arch of varaible_ff_demo is

signal tmp_sigl: std_logic;

begin

process (clk)

begin

if (clk’event and clk=’1’) then

tmp_sig1 <= a and b;

ql <= tmp_sigl;

end if ;

end process;

Registers are inferred

q1 is one clock later than

tmp_sig1

Lund University / EITF35/ Liang Liu 2014

Variables in Sequential Circuit: Example

25

architecture arch of varaible_ff_demo is

begin

process (clk)

variable tmp_var2: std_logic; -- declare in process

begin

if (clk’event and clk=’1’) then

tmp_var2 := a and b; -- notice assignment format

ql <= tmp_var2;

end if ;

end process;

Use variable

tmp_sig2 is used after it

is assigned

Just a hard wire, no Reg.

is inferred

Lund University / EITF35/ Liang Liu 2014

Variables in Sequential Circuit: Example

26

architecture arch of varaible_ff_demo is

begin

process (clk)

variable tmp_var2: std_logic; -- declare in process

begin

if (clk’event and clk=’1’) then

ql <= tmp_var2;

tmp_var2 := a and b; -- change the assignment order

end if ;

end process;

2min: Draw the

corresponding circuits

tmp_var2

No Variables!

Lund University / EITF35/ Liang Liu 2014

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

27

Lund University / EITF35/ Liang Liu 2014

Poor Design 1: Misuse of asynchronous reset

28

Example: a mod-10 counter: 0,1,2 …,7,8,9, 0,1,2…, 7,8,9,0

How to wrap from 9 to 0?

Lund University / EITF35/ Liang Liu 2014

Poor Design 1: Misuse of asynchronous reset

29

entity modl0_counter is

port(clk,reset: in std_logic; q:out std_logic_vector (3 downto 0));

end modl0_counter;

architecture poor_async_arch of mod10_counter is

signal r_reg: unsigned (3 downto 0) ;

signal r_next: unsigned (3 downto 0) ;

signal async_clr: std_logic;

begin

process (clk,async_clr)

begin

if (async_clr=‘1') then

r_reg <= (others=>‘0');

elsif(clk'event and clk=‘1’) then

r_reg<=r_next;

end if ;

end process;

async_clr <='1' when (reset='l’or r_reg="1010") else ‘0’;

r_next <= r_reg + 1;

q <= std_logic_vector(r_reg);

end poor_async_arch;

Lund University / EITF35/ Liang Liu 2014

Poor Design 1: Misuse of asynchronous reset

30

Problems

•Glitch in counter: r_reg goes to 10 and then reset, due to the delay of

comparator

•Glitches in aync_clr can reset the counter mistakenly

Finish the output timing

diagram in 2 min

Lund University / EITF35/ Liang Liu 2014

Poor Design 1: Misuse of asynchronous reset

31

Remedy

architecture two_seg of mod10_counter is

signal r_reg: unsigned (3 downto 0) ;

signal r_next: unsigned (3 downto 0) ;

begin

process (clk,reset)

begin

if (reset =‘1') then r_reg <= (others=>‘0');

elsif(clk'event and clk=‘1’) then r_reg<=r_next;

end if ;

end process;

r_next <= (others=>’0’) when (r_reg=9) else r_reg+1;

q <= std_logic_vector(r_reg);

end two_seg;

asynchronous reset should

ONLY be used for initialization!

Lund University / EITF35/ Liang Liu 2014

Something to remember

32

Strictly follow the synchronous design methodology; i.e., all

registers in a system should be synchronized by a common

global clock signal (otherwise special circuits are needed)

The memory components should be coded clearly so that a

predesigned cell can be inferred from the device library.

Isolate the memory components from the VHDL description and

code them in a separate segment. One-segment coding style is

not advisable.

Asynchronous reset, if used, should be only for system

initialization. It should not be used to clear the registers during

regular operation

Unless there is a compelling reason, a variable should not be

used to infer a memory component.

Lund University / EITF35/ Liang Liu 2014

Reading advice

33

RTL Hardware Design Using VHDL: P213-P254

Lund University / EITF35/ Liang Liu 2014

Thanks

34

