

EITF35: Introduction to Structured VLSI Design

Part 2.2.1: Sequential circuit

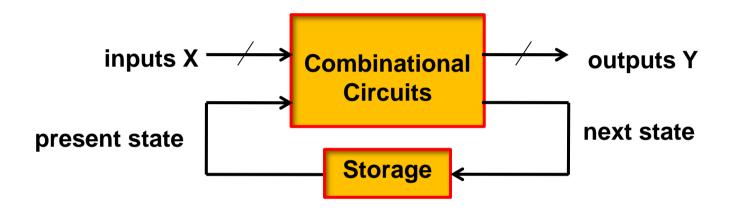
Liang Liu liang.liu@eit.lth.se

Outline

- □ Sequential vs. Combinational
- **□**Synchronous vs. Asynchronous
- **□**Basic Storage Elements
- □Timing
- □Folding & Pipeline

Sequential vs. Combinational

☐ A combinational circuit:

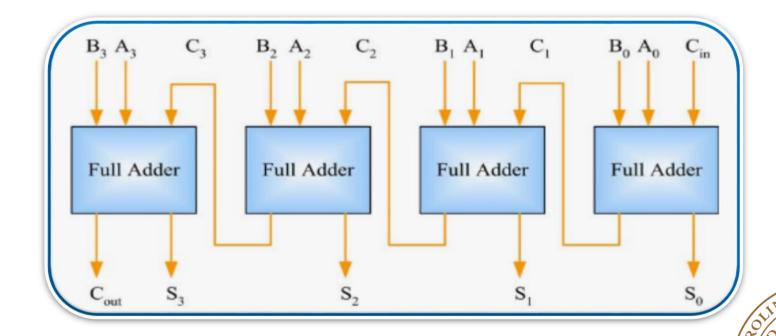


- □ At any time, outputs depend only on present inputs
 - Changing inputs changes outputs
- No regard for previous inputs
 - No memory (history)
- ☐ Time is "ignored"!
 - Time-independent circuit

Sequential vs. Combinational

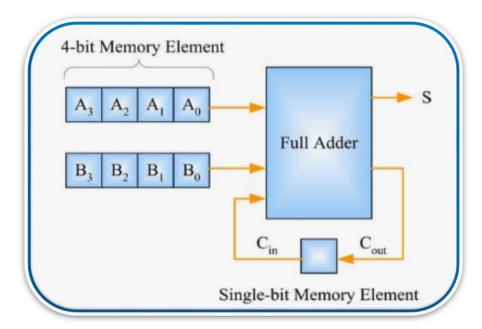
□ A sequential circuit:

- Outputs depends on inputs and past history of inputs
 - Previous inputs can be stored into storage elements
 - Input order matters



Sequential vs. Combinational: adders

□ Calculate $A_3A_2A_1A_0 + B_3B_2B_1B_0$


Combinational adder

- 4 full adders are required
- One adder is active at a time slot

What we can do with memory?

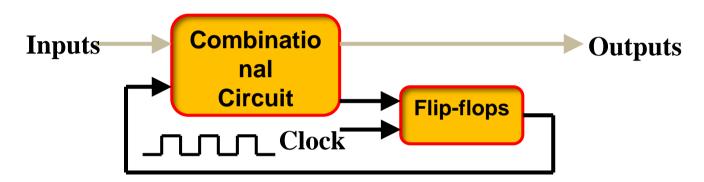
■ Sequential Adder

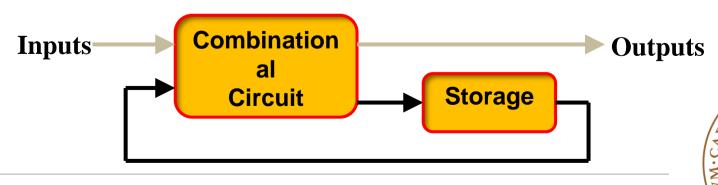
□Folding!

- One full adder
- 1-bit memory for carry
- Two 4-bit memory for operators

□4 clock cycles to get the output

Outline


- **□**Sequential vs. Combinational
- **□**Synchronous vs. Asynchronous
- **□**Basic Storage Elements
- **■**Timing
- □Folding & Pipeline


Synchronous vs. Asynchronous

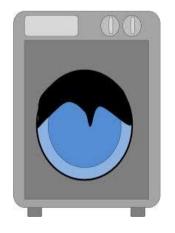
■Two types of sequential circuits:

•Synchronous: The behavior of the circuit depends on the input signal at discrete instances of time (also called **clocked**)

•Asynchronous: The behavior of the circuit depends on the input signals at *any instance of time*

Synchronous vs. Asynchronous

- □When you have a clock
- ■You know that washer takes 1 hour
- ☐ You put the laundry in the washer and leave
- □ Dry 1hour later


Synchronous vs. Asynchronous

□What if you don't have a clock ...

Synchronous or Asynchronous?

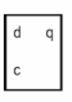
- □Sync. Advantages: Simplicity to design, debug, and test
 - Timing is controlled by one simple clock
 - No hand-shake circuits
 - Well supported by EDA tools
 - Clock-gating to save power
 - Recommended for VLSI
- ■Sync. Disadvantages:
 - Performance constrained by worst-case: critical path
 - Overhead for clock network
 - Less power efficient

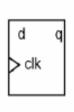
We will focus on synchronous circuits in this course

Power Example

Internal Switching Leakage Total						
Power Group	Power	Power	Power	Power (%) Attrs	
io_pad	0.0000	0.0000	0.0000	0.0000 (0.0	0%)	
memory	0.0000	0.0000	0.0000	0.0000 (0.00	0%)	
black_box	0.0000	0.0000	0.0000	0.0000 (0.00	00/)	
clock_network	0.0137 4	l.982e-03	3.116e-0	0.0187 (1	3.76%)	
register	3.029e-03	1.298e-03	3 8.082e-0	04 5.136e-03	(3.79%)	
combinational	0.0518	0.0557 4	.337e-03	0.1118 (82	.45%)	

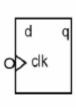
Outline


- **□**Sequential vs. Combinational
- ■Synchronous vs. Asynchronous
- **□**Basic Storage Elements
- **■**Timing
- □Folding & Pipeline

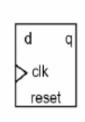

Basic storage element

□D latch: level sensitive

□D flip-flop (D-FF): edge sensitive



С	q*
0	q
1	d


clk	q*
0	q
1	q
₹	d

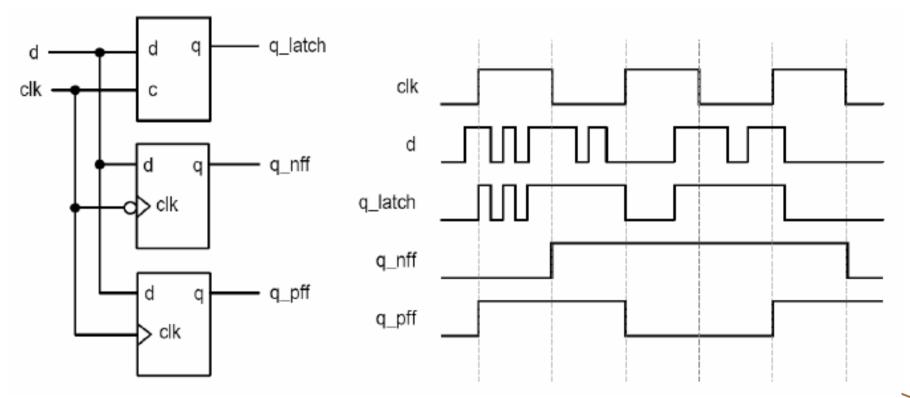
D latch

clk	q*
0	q
1	q
£	d

pos-edge triggered D-FF

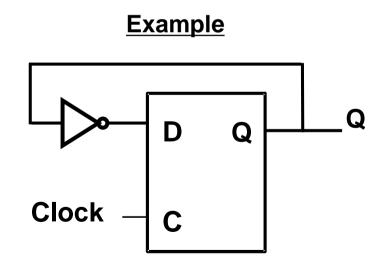
reset	clk	q*
1	-	0
0	0	q
0	1	q
0	₹	d

neg-edge triggered D-FF


D-FF with reset

Basic storage element

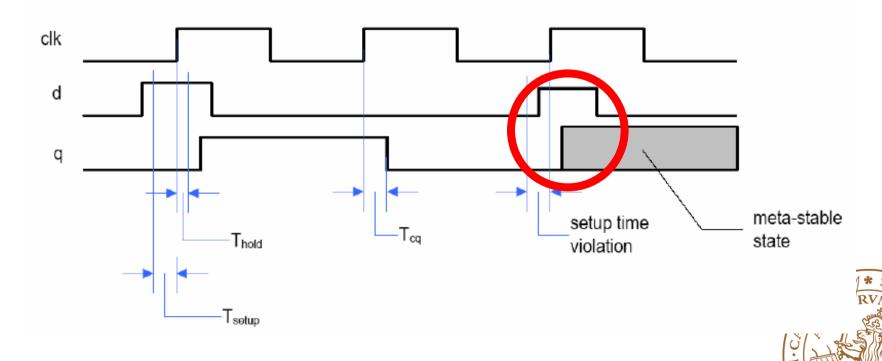
□D latch: level sensitive

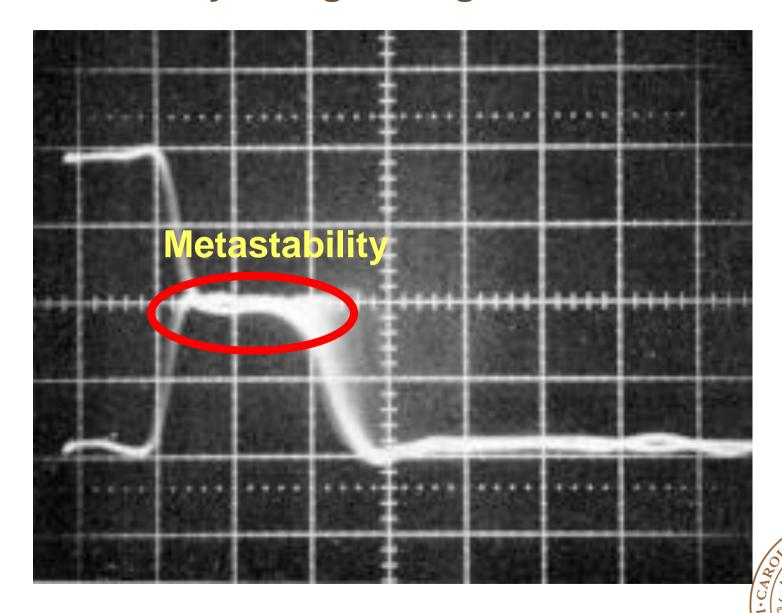

□D flip-flop (D-FF): edge sensitive

Problem with Latches

- □ Problem: A latch is transparent; state keep changing as long as the clock remains active
- □ Due to this uncertainty, latches can not be reliably used as storage elements.
- □What happens if Clock=1? What will be the value of Q when Clock goes to 0?

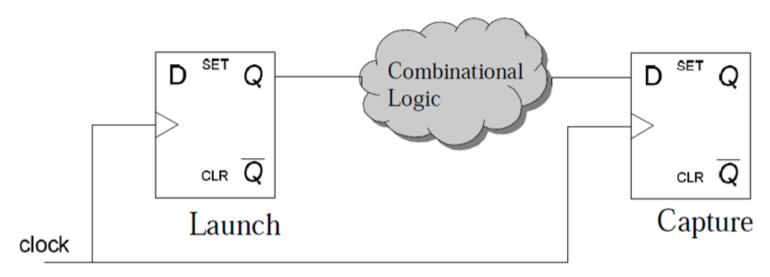
Outline


- **□**Sequential vs. Combinational
- ■Synchronous vs. Asynchronous
- **□**Basic Storage Elements
- □Timing
- □Folding & Pipeline


Flip Flops Timing

Very Important Timing Considerations!

- □ Setup Time (Ts): The minimum time during which D input must be maintained before the clock transition occurs.
- □ Hold Time (Th): The minimum time during which D input must not be changed after the clock transition occurs.



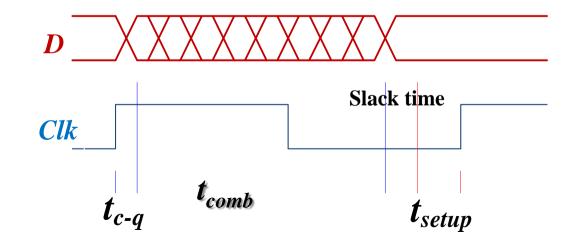
Metastability in Digital Logic

How fast can a synchronous circuit run?

□ RTL (Register Transfer Level)

□ Timing analysis:

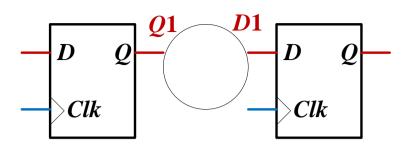
 Starting with the clock rising edge at the launch FF, end with the clock rising edge (next period or same period) of the capture FF

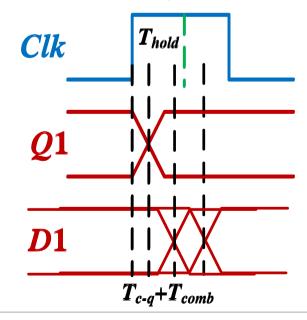

Setup Time

□ Setup Timing analysis:

 Starting with the clock rising edge at the launch FF, end with the clock rising edge (next period) Clk of the capture FF

- □ Data-Path (arrive time): T_{Combinational logic} + FF_{launch}(clk -> Q)
- □ Clock-Path (required time): Clock Period FF tSetup
- □ Timing constraint: T_{Combinational logic} + FF_{launch}(clk -> Q) < Clock Period FF_{tSetup}




Hold Time

□ Hold Timing analysis:

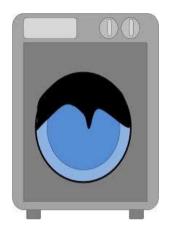
 Starting with the clock rising edge at the launch FF, end with the clock rising edge (same period) of the capture FF

- □ Data-Path (arrive time): T_{Combinational logic} + FF_{launch}(clk -> Q)
- □ Clock-Path (required time): FF thold
- □ Timing constraint: T_{Combinational logic} + FF_{launch}(clk -> Q)> FF_{thold}

Outline

- **□**Sequential vs. Combinational
- ■Synchronous vs. Asynchronous
- **□**Basic Storage Elements
- ■Timing
- **□**Folding & Pipeline

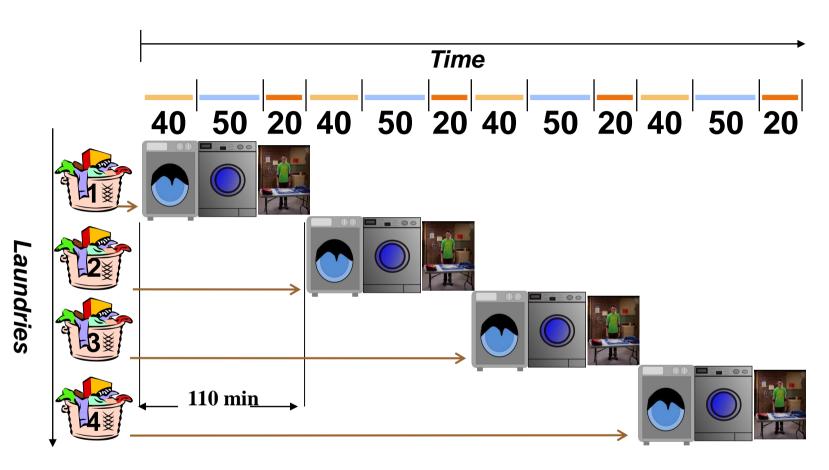
Pipeline


□Acknowledgement:

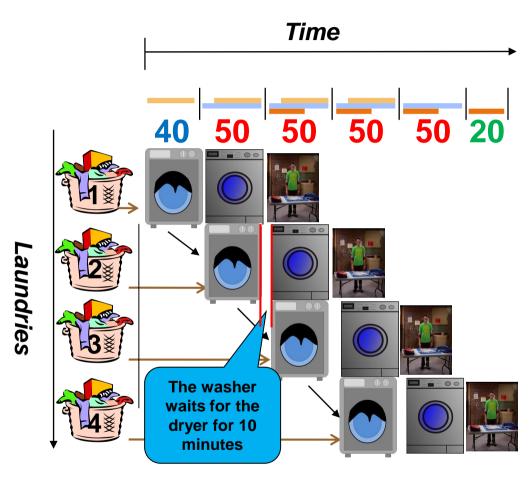
- The following slides have been provided by Prof. Ward in September 2004.
- Reformatting of PowerPoint and addition of two more slide done September 2007 by Jens Sparsø.
- Slides are used in DTU course 02154 Digital Systems Engineering (fall 2008).
- Due to Joachim Rodrigues' position at DTU, I used some of the slides in EITF35.

Pipelining

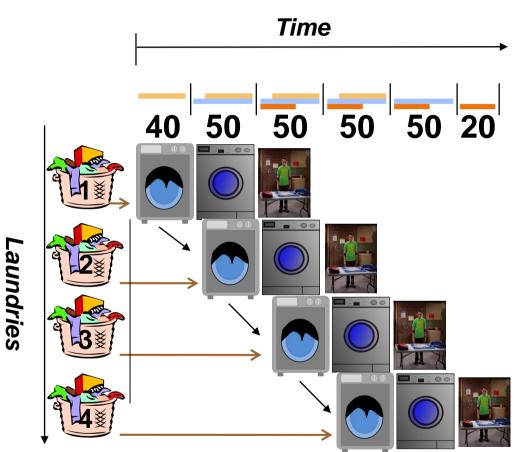
□Start again from laundry room



- □Small laundry has one washer, one dryer and one folder, it takes 110 minutes to finish one load:
 - Washer takes 40 minutes
 - Dryer takes 50 minutes
 - "Folding" takes 20 minutes
- □ Need to do 4 laundries

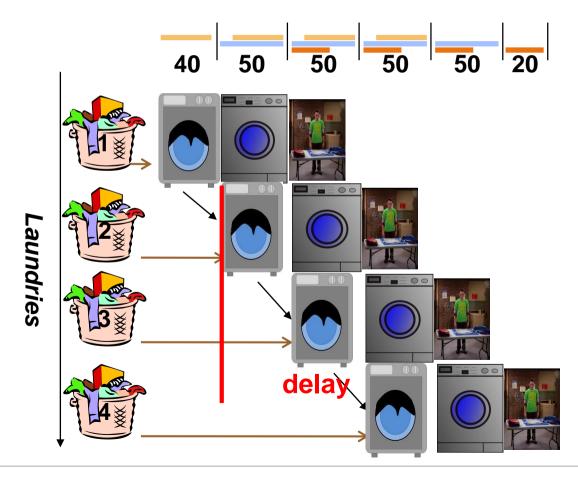


Not very smart way...


If we pipelining

Total = Washer+N*Max(Washer, Dryer, Folder)+Folder = _____ mins

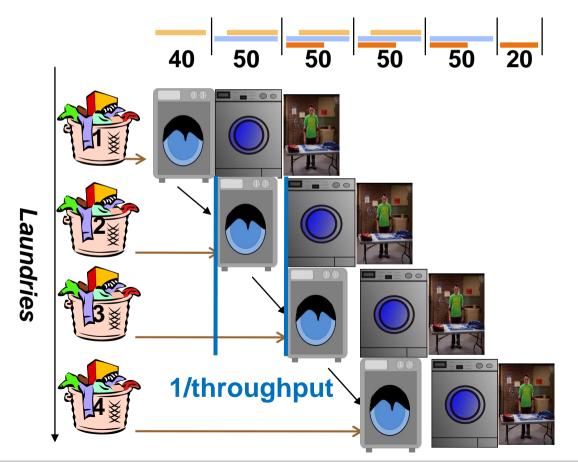
Pipeline Facts


- Multiple tasks operating simultaneously
- □Pipelining doesn't help latency of single task, it helps throughput of entire workload
- □Pipeline rate limited by slowest pipeline stage
- □Unbalanced lengths of pipe stages reduces speedup
- □ Potential speedup ∝ Number of pipe stages

Some definitions

Very Important!

□ Latency: The delay from when an input is established until the output associated with that input becomes valid.



Some definitions

Very Important!

□ Throughput: The rate of which inputs or outputs are processed or how frequently a laundry can be loaded

$$(non-pipeline\ Laundry = _____1/110__ outputs/min)$$

 $(pipeline\ Laundry = _____1/50__ outputs/min)$

Combinational, Folding and Pipelined

Combinational Circuits

- Advantage: low latency
- Disadvantage: low throughput, more hardware, low utilization

□ Folding

- Advantage: less hardware, high utilization
- Disadvantage: high latency, limited application

Pipeline

- Advantage: very high throughput
- Disadvantages: pipeline latency, more hardware

Thanks!

