UNIVERSITY

EITF35: Introduction to Structured VLSI Design

Part 1.2.1: Finite State Machines

Liang Liu
liang.liu@eit.Ith.se

Outline

\square FSM Overview
-FSM Representation

- examples
\square Moore vs. Mealy Machine
- from circuits perspective

FSM Overview

Ilt has at most a finite number of states
\square Models for representing sequential circuits
-Used mainly as a controller in a large system
\square Moore vs. Mealy machines

Abstraction of state elements

\square A FSM consists of several states. Inputs into the machine are combined with the current state of the machine to determine the new state or next state of the machine.
\square Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.

Abstraction of state elements

\square A FSM consists of several states. Inputs into the machine are combined with the current state of the machine to determine the new state or next state of the machine.
\square Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.
\square Divide circuit into combinational logic and state

Outline

■FSMI Overview
-FSM Representation
■Moore vs. Mealy Outputs
■Exercise

FSM Representation

\square Can be represented using a state transition table which shows the current state, input, any outputs, and the next state.

Input Current State	Input $^{\text {o }}$	Input $_{1}$ Input $_{\text {n }}$
State $_{0}$ State $_{1}$ State $_{\mathrm{n}}$	Next State $/$ Output \ldots. \ldots. \ldots. \ldots. \ldots. \ldots.		Next State / Output \qquad

FSM Representation

\square It can also be represented using a state diagram which has the same information as the state transition table.

Input / Mealy Output
\square Mealy Output
Outputs $=\mathrm{F}$ (Inputs, Current state) Next state $=$ F(Inputs, Current state)

Moore Output
Outputs $=F($ Current state $)$
Next state $=F($ Inputs, current state $)$

Input / Mealy Output

Suggestion: do NOT mix Mealy and Moore in one design

Example 1: A Mod-4 Synchronous Counter

\square Function: Counts from 0 to 3 and then repeats; Reset signal reset the counter to 0 .
\square lt has a clock (CLK) and a RESET input.
\square Outputs appear as a sequence of values of 2 bits (q1 q0)
\square As the outputs are generated, a new state (s1 s0) is generated which takes on values of 00, 01, 10, and 11.

State Transition Table of Mod-4 Counter

One input is missing!

State Transition Diagram for the Mod-4 Counter

Use meaningful names for states

Example 2: Lock

\square Pushing: * $\{$ A; B; B; A \} => Open

- $A \& B$ never push at the same time
- Have to release the button before next pushing

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ...
\square Debounce before next pushing

Finish the state graph for the Lock-FSM (5min)

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ... \square Debounce before next pushing

Consider all the input possiblities at each state

Outline

ㅁFSMI Overview
■FSM Representation
\square Moore vs. Mealy Outputs
■Exercise

Output Timing: Moore

$\square .$. a Moore machine is not able to produce A->1 until the next clock when it enters s1

Output Timing: Mealy

\square When in s0, a Mealy machine may produce A->1 immediately in response to R ->1

Output Timing: Moore and Mealy

$R=\theta / A=0$

Moore vs. Mealy (summary)

\square A Moore machine produces glitch free outputs.
\square A Moore machine produces outputs depending only on states, and this may allow using a higher-frequency clock.
\square A Mealy machine can be specified using less states because it is capable of producing different outputs in a given state.
\square A Mealy machine can be faster because an output may be produced immediately instead of at the next clock tick.
\square Which one is better?
-Edge sensitive control
\square E.g., enable signal of counter
\square Both can be used but Mealy is faster
-Level sensitive control
$\square E . g .$, write enable signal of SRAM
\square Moore is preferred for glitch free

?

