

EITF35: Introduction to Structured VLSI Design

Part 1.2.1: Finite State Machines

Liang Liu liang.liu@eit.lth.se

Outline

FSM Overview

□FSM Representation

examples

Moore vs. Mealy Machine

from circuits perspective

FSM Overview

It has at most a finite number of states
Models for representing sequential circuits
Used mainly as a controller in a large system
Moore vs. Mealy machines

Abstraction of state elements

- A FSM consists of several states. Inputs into the machine are combined with the *current state* of the machine to determine the new state or *next state* of the machine.
- Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.

Abstraction of state elements

- A FSM consists of several states. Inputs into the machine are combined with the *current state* of the machine to determine the new state or *next state* of the machine.
- Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.
- Divide circuit into combinational logic and state

Outline

FSM Overview FSM Representation Moore vs. Mealy Outputs Exercise

FSM Representation

Can be represented using a state transition table which shows the *current state*, *input*, any *outputs*, and the *next state*.

Input	Input _o	Input ₁	Input _n
Current State			
$State_{o}$ $State_{1}$	Next State / Output	•••••	Next State / Output
State _n			

FSM Representation

It can also be represented using a state diagram which has the same information as the state transition table.

Input / Mealy Output

Suggestion: do NOT mix Mealy and Moore in one design

Example 1: A Mod-4 Synchronous Counter

- Function: Counts from 0 to 3 and then repeats; Reset signal reset the counter to 0.
- □ It has a clock (*CLK*) and a *RESET* input.
- Outputs appear as a sequence of values of 2 bits (q1 q0)
- As the outputs are generated, a new state (s1 s0) is generated which takes on values of 00, 01, 10, and 11.

State Transition Table of Mod-4 Counter

State Transition Diagram for the Mod-4 Counter

Use meaningful names for states

Example 2: Lock

Pushing: * { A; B; B; A } => Open

- A & B never push at the same time
- Have to release the button before next pushing

State Diagram for lock-FSM

A and B are never pressed at the same time ...Debounce before next pushing

Finish the state graph for the Lock-FSM (5min)

State Diagram for lock-FSM

A and B are never pressed at the same time ...Debounce before next pushing

Consider all the input possiblities at each state

Outline

FSM Overview
FSM Representation
Moore vs. Mealy Outputs
Exercise

Output Timing: Moore

I ... a Moore machine is not able to produce A->1 until the next clock when it enters s1

Output Timing: Mealy

When in s0, a Mealy machine may produce A->1 immediately in response to R->1

Output Timing: Moore and Mealy

Moore vs. Mealy (summary)

A Moore machine produces glitch free outputs.

□A Moore machine produces outputs depending only on states, and this may allow using a higher-frequency clock.

□A Mealy machine can be specified using less states because it is capable of producing different outputs in a given state.

□A Mealy machine can be faster because an output may be produced immediately instead of at the next clock tick.

Which one is better?

Edge sensitive control

E.g., enable signal of counter

Both can be used but Mealy is faster

Level sensitive control

E.g., write enable signal of SRAMMoore is preferred for glitch free

