Introduction to structured VLSI design Design for Test (DfT) - Part 1

Erik Larsson EIT, Lund University

Outline

- Electronics
- Manufacturing
- Test, diagnosis, and verification
- Test generation

- Viper 2.0 RevB
- Analog/Digital TV Processor
- 10mm x 10 mm (100 mm²)
- ~10 M gates
- ~50 M transistors
- ~100 clock domains

System-on-Chip

- Processor Cores
 - ARM, MIPS, PowerPC
- Memories
 - SRAM, ROM, Flash, DRAM
- DSP Cores
- Peripherals
 - DMA Controllers, MMU
- Interface
 - PCI, USB, UART
- Multimedia
 - JPEG compression, MPEG decoder
- Networking
 - Ethernet controller

Printed Circuit Board (PCB)

Multi-board System

Products with Electronics

Outline

- Electronics
- Manufacturing
- Test, diagnosis, and verification
- Test generation

Making Electronic Products

Design

IC Manufacturing

[&]quot;Note: Vertical scale of chart not proportional to actual Transistor count.

IC Manufacturing

- The cost to set up a modern <u>45 nm</u> process is \$200–500 million
- The purchase price of a photomask can range from \$1,000 to \$100,000 for a single mask.
- As many as 30 masks (of varying price) may be required to form a complete <u>mask set</u>.

Bonding Techniques

Package-to-Board Interconnect

(a) Through-Hole Mounting

(b) Surface Mount

Outline

- Electronics
- Manufacturing
- Test, diagnosis, and verification
- Test generation

IC Defects

PCB Defects

Defect classes	Occurrence frequency (%)
Shorts Opens Missing components Wrong components Reversed components Bent leads Analog specifications Digital logic Performance (timing)	51 1 6 13 6 8 5 5 5 5 5

Ref.: J. Bateson, In-Circuit Testing, Van Nostrand Reinhold, 1985.

Making Fault Free Electronic Products

Development

Improve design

Problem?

- No Trouble Found (NTF) is when a product fails in operation but when taken to a repair-shop no problem can be found
- NTF is according to Accenture Report, in 2008 in US, around 70% of all product returns. Cost-wise, NTF amounted up to 50% of total 13.8 billion USD (10.5 billion EUR) returns and repairs cost in US, which approximates to 25 USD (19 EUR/170 SEK) per year per capita
 - Translating to Sweden: Annual cost becomes 1700 000 000 (1.7 miljarder) SEK
- The International Technology Roadmap for Semiconductors (ITRS), 2012, lists ageing in semiconductor devices as one of the few most difficult challenges of process integration that affects reliability.

Future challenges

Late 20	The New Reality
Moore's Law — 2× transistors/chip every 18-24 months	Transistor count still 2× every 18-24 months, but see below
Dennard Scaling — near-constant power/chip	Gone. Not viable for power/chip to double (with 2× transistors/chip growth)
The modest levels of transistor unreliability easily hidden (e.g., via error correction)	Transistor reliability worsening, no longer easy to hide
Focus on computation over communication	Restricted inter-chip, inter-device, inter- machine communication; communication more expensive than computation
One-time (non-recurring engineering) costs growing, but amortizable for mass- market parts	Expensive to design, verify, fabricate, and test, especially for specialized- market platforms

Making Fault Free Electronic Products

Types of Test

• Wafer sort - tests the logic of each die on the wafer

Final test - tests the logic of each packaged IC

Board test - tests interconnections (soldering errors)

Verification, Test and Diagnosis

- <u>Verification</u> is to verify the correctness of the design. It is performed through simulation, hardware emulation, or formal methods. It is performed once prior to manufacturing. Responsible for quality of design.
- <u>Test</u> verifies the correctness of manufactured hardware. Test is a two-part process:
 - Test generation: software process executed once during design, and
 - Test application: electrical tests applied to hardware. Test application performed on every manufactured device. Responsible for quality of devices.
- Diagnosis: Identification of a specific fault that is present.

Diagnosis and Volume Production

Tests

- Good IC that pass test -> OK
 Bad IC that fail test -> OK
- Bad ICs that pass test -> test escape
 Good ICs that fail test -> yield loss

Stimulus: test vectors

Test pattern: test vector + expected test response Produced test response is compared against expected test response

Automatic Test Equipment (ATE)

Automatic Test Equipment (ATE)

- Consists of:
 - Powerful computer
 - Powerful 32-bit Digital Signal Processor (DSP) for analog testing
 - Test Program (written in highlevel language) running on the computer
 - Probe Head (actually touches the bare or packaged chip to perform fault detection experiments)
 - Probe Card or Membrane Probe (contains electronics to measure signals on chip pin or pad)

Objective with Test

- Specify the test vector
- Determine correct response (expected response)
- Evaluate cost of test (# patterns related to cost)
- Evaluate quality of test
- Fault coverage = No of faults detected / No. faults modeled
- Yield = Number of good parts / Total number of tested parts

Outline

- Electronics
- Manufacturing
- Test, diagnosis, and verification
- Test generation

Exhaustive Test Generation

- Try all possible alternatives.
- For a 2-input design, 2² (4 vectors are needed).

- For a 30-input pin design, 2³⁰ (1073741824 vectors are needed)
- 1 vectors per second and we know that there are 60*60*24*365=31536000 seconds in a year
- 2³⁰ / 31536000 = 34 years

Defects, Faults, and Fault Models

- Real defects too numerous and often not analyzable
- A fault model
 - identifies targets for testing
 - makes analysis possible
- A defect manifests itself as a fault
- A fault is modeled by a fault model
- Example of fault models:
 - Stuck-at Fault, Bridging Fault, Shorts (Resistive shorts), Opens, Delay Faults, Transient Fault
- So far stuck-at fault model is the most used one:
 - Motivations: Simple and covers quite well possible defects

Defects, Faults and Fault Models

Example of a defect

- A defect manifests itself as a fault
- A fault is modeled with a fault model

Test generation

Test generation

Example: Create test for output connected to V_{dd}

Test generation

Example: Create test for output connected to V_{dd}

Stuck-at Fault (SAF) Model

- A line is fixed to logic value 0 (stuck-at-0) or 1 (stuck-at-1)
- For the stuck-at fault model there are for a circuit with n lines 2*n possible faults

- Quality of a test is given by: fault coverage = faults detected / total number of faults
- Example: 12 lines (24 faults) detect 15 faults: f.c.=15/24 (63%)

Single Stuck-at Fault

- Three properties define a single stuck-at fault
 - Only one line is faulty
 - The faulty line is permanently set to 0 or 1
 - The fault can be at an input or output of a gate
- Example has 12 fault sites () and 24 single stuck-at faults

Single Stuck-at Fault

- Let us generate a s-a-1 on the same line
- To get c=0, set a=1 and b=1
- To get fault effect on d (1/0), set a=1
- To get fault effect on z (0/1), set e=0
- To get e=0, set b=1 and c=1 (but c=0 see above)

Deterministic Test Generation

While fault coverage < desired limit {

Select an uncovered fault f

Generate test for the fault f

Evaluate fault coverage

}

Needed functions to generate a test:

- Excite (provoke) the fault
- Sensitize (propagate) the results to primary outputs
- Justify other values in the circuit
- ATPG:
 - D-algorithm
 - Path-Oriented Decision-Making (PODEM)
 - Fanout-oriented Test Generation (FAN)
 - Structure-oriented cost-reducing automatic test pattern generation (SOCRATES)

D-notation

- Five-valued algebra (0,1,X,D,D')
 - D=1/0
 - D'=0/1

- Stuck-at 0 on A ->
- Line A = D
- To propagate D (fault effect) to Z (check table) set B=1

	((
OR	0	1	D	D'	Х	
0	0	1	D	D'	Х	
1	1	1	1	1	1	
D	D	1	D	1	Х	
D'	D'	1	1	D'	Х	
Х	X	1	Х	Х	Х	
AND	0	1	D	D'	Х	
AND 0	0	1 0	D 0	D' 0	X 0	
AND 0 1	0 0 0	1 0 1	D 0 D	D' 0 D'	X 0 X	
AND 0 1 D	0 0 0 0	1 0 1 D	D 0 D D	D' 0 D' 0	X 0 X X	
AND 0 1 D D'	0 0 0 0 0	1 0 1 D D'	D 0 D D 0	D' 0 D' 0 D'	X 0 X X X	

D-Algorithm

- Initialize the circuit by placing X on each line
- For a SA0, X=D and A=B=0 (for the selected fault)
- Propagate D through G2
- Select a sensitizing path (we select G3)
- To propagate through G3, we let U=0
- Propagate through G5
- Reached a primary output with D
- Justify values on H, Y, U, W. H=0 (ok). F=0? Conflict! Select Y=0

D-Algorithm

1	Operation	Gate	А	В	X	Y	W	U	F	G	Н	Z
2	Initialization		х	x	x	х	х	х	х	х	х	х
3	Provoke	G1	0	0	D	х	х	x	х	х	х	х
4	D-drive	G2	0	0	D	х	1	х	D	х	х	х
5	D-drive	G3	0	0	D	х	1	0	D	D'	х	х
6	D-drive	G5	0	0	D	х	1	0	D	D'	0	D'
7	Justification	H=0	0	0	D	х	1	0	1	D'	0	D'
8	Justification	H=0	0	0	D	0	1	0	D	D'	0	D'

Commercial ATPG Tools

- Commercial ATPG tools are often for combinational circuits
- Commercial tools usually make use of a random test generation for 60-80% of the faults (easy to detect) and deterministic test generation for the remaining part (hard to detect)
- Examples of commercial ATPG tools:
 - Encounter Test Cadence
 - TetraMax Synopsis
 - FastScan, FlexTest Mentor Graphics

Introduction to structured VLSI design Design for Test (DfT) - Part 1

Erik Larsson EIT, Lund University

