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Outline

Overview of Memory

•Application, history, trend

•Different memory type

•Overall architecture

Registers as Storage Element

•Register File

•FIFO

Xilinx Storage Elements
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Memory is Everywhere
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Memory Wafer Shipments Forecast
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Faster-Than-Moore?

Bits shipped routinely doubles-to-triples year-over-year
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Bandwidth 
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Bandwidth (cont’d.)
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Memories, on chip
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Power and Bandwidth becomes bottleneck 

Everything is pointing to more and more “local” memory/storage 

at the device level

Intel Haswell

Intel ATOM

Nvidia Tegra 2
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Memories, on chip
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One of our chip for 

wireless communication 

system (iterative 

decoder+interleaver)
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Memories, History
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First Storage? 

Early Memory

•Drum memory: magnetic data 

storage device.

•Gustav Tauschek (1932)

•Widely used in the 1950s and 

into the 1960s as computer 

memory
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Memory, current state
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Yesterday:

•RAM memories are historically driven by computing applications

•NOR/NAND Flash is used in most of consumer devices (cell-phone, digital 

camera, USB stick …)

Today:

•New generation memories

PRAM, FeRAM, MRAM..

•“Solid State” memory is the killer application for NAND Flash in volume:

SSDs to replace HDD (hard disk magnetic drives)

•RAM (SRAM / DRAM) 

DDR3 / DDR4 DRAM
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Memory, leading the semiconductor tech.
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First 32nm NAND Flash memory, 2009, Toshiba

First 32nm CPU released, 2010, Intel Core i3
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Memory, leading the semiconductor tech.
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First 22-nm SRAMs using Tri-Gate transistors, in Sept.2009

First 22-nm Tri-Gate microprocessor (Ivy Bridge), released in 2013
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Memory Classification

Picture from Embedded Systems Design: A Unified Hardware/Software Introduction
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Memory Hierarchy
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Hierarchy, Heterogeneous

16
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Memory Basic Concept
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memory external view

Stores large number of bits

• m x n: m words of n bits each

• k = Log2(m) address input signals

• or m = 2k words

• e.g., 4096 x 8 memory:

 32,768 bits

 12 address input signals

 8 input/output data signals

Memory access

• r/w: selects read or write

• enable: read or write only when asserted

• Address

• Data-port

We stay at higher-level, gate-level view of 

memory will be taught at Digital IC Design  
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Memory Architecture
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Outline

Overview of Memory

•Application, history, trend

•Different memory type

•Overall architecture

Registers as Storage Element

•Register File

•FIFO

Xilinx Storage Elements
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Storage Examples 1

Register File

• Used as fast temporary storage

• Registers arranged as array

• Each register is identified with an address

• Normally has 1 write port (with write enable signal)

• Can has multiple read ports

20
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Register File

Example: 4-word register file with 1 write port and two read ports

21

Register array:

•4*16bit registers

•Each register has an 

enable signal

Write decoding circuit:

•0000 if wr_en is 0

•1 bit asserted according 

to w_addr if wr_en is 1

Read circuit:

•A mux for each read port
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VHDL: a parameterized 2W-by-B register file

22

A user-defined array-of-array data type is introduced
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VHDL: a parameterized 2W-by-B register file
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 Index to access an element in the array

• s(i) to access the ith row of the array s

• S(i)(j) to access the jth element of ith row in the array
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VHDL: a parameterized 2W-by-B register file
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Enable logic for register
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VHDL: a parameterized 2W-by-B register file
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Enable logic for register

(Cont.)
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VHDL: a parameterized 2W-by-B register file
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Read Multiplexing

r_data0

r_data1

r_addr0

r_addr1
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Storage Examples 2

FIFO (first in first out) Buffer

• “Elastic” storage between two subsystems

27
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Circular FIFO

How to Implement a FIFO? 

• Circular queue implementation

• Use two pointers and a “generic storage”

Write pointer: point to the empty slot before the head of the 

queue

Read pointer: point to the tail of the queue

28
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(f) 5 6 4

Circular FIFO
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FIFO Implementation

Overall Architecture

•Storage Elements

Reg. file

•FIFO Controller

Read and write 

pointers: 2 counters

Status circuit: 

full, empty

30
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FIFO Implementation: Controller

Augmented binary counter:

• Increase the counter by 1 bits

• Use LSBs for as register address

• Use MSB to distinguish full or empty

31
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FIFO Implementation: VHDL

32

Controller Registers
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FIFO Implementation: VHDL

33

Controller 

Comb.
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Outline

Overview of Memory

•Application, history, trend

•Different memory type

•Overall architecture

Registers as Storage Element

•Register File

•FIFO

Xilinx Storage Elements

Memory Generator
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Storage Components in a Spartan-3 Device

Distributed RAM

• Fast, localized

• ideal for small data buffers, FIFOs, or register files

Block RAM

• For applications requiring large, on-chip memories

35

Configurable

Logic Blocks 

(CLBs)

Block SelectRAM™

resource
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16-bit SR

16 x 1 RAM

4-input LUT

source Mentor Graphics Corp

16 x 1 ROM

(logic)

Spartan-3 Distributed Memory

Source:Xilinx

 One CLB has four slices: SLICEM & SLICEL 

 Each LUT in SLICEM has RAM16×1S

36
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Uses a LUT in a slice as 
memory

•An LUT equals 16x1 RAM

•Cascade LUTs to increase RAM size

Two LUTs can make

•32 x 1 single-port RAM

•16 x 2 single-port RAM

•16 x 1 dual-port RAM

Synchronous write

Asynchronous read

•Accompanying flip-flops can be 
used to create synchronous read

RAM and ROM are initialized 
during configuration

•Data can be written to RAM after 
configuration

Spartan-3 Distributed Memory

37
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Timing

•Synchronous write

•Asynchronous read

Spartan-3 Distributed Memory

38
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Spartan-3 Block Memory

39

 Most efficient memory implementation

• Dedicated blocks of memory

• 18 kbits = 18,432 bits per block (16 k without parity bits)

 Builds both single and true dual-port RAMs

 Synchronous write and read (different from distributed RAM)
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Block RAM Configuration (port aspect ratios)
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Block RAM Ports

wA,B : the data path width at ports A,B.

pA,B : the number of data path lines serving as parity bits.

rA,B : the address bus width at ports A, B

The control signals CLK, WE, EN, and SSR on both ports have the 

option of inverted polarity.

41
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Block RAM: Operation Modes

42
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Block RAM: WRITE_FIRST

43
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Block RAM: NO_CHANGE

44
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Block RAM: READ_FIRST (Recomm.)
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Reading Advice

RTL Hardware Design Using VHDL: P276-P292

XAPP463 Using Block RAM in Spartan-3 Generation FPGAs (Google 

search: XAPP463)

 XAPP464 Using Look-Up Tables as Distributed RAM in Spartan-3 

Generation FPGAs (Google search: XAPP464)

 XST User Guide, Section: RAMs and ROMs HDL Coding Techniques 

(Google search: XST User Guide (PDF))

 ISE In-Depth Tutorial, Section: Creating a CORE Generator Software 

Module (Google search: ISE In-Depth Tutorial)

46
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Why two DFFs?

47
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Crossing clock domain

48

Multiple clock is needed in case:

•Inherent system requirement

Different clocks for sampling and processing

•Chip size limitation

Clock skew increases with the # FFs in a system

Current technology can support up to 10^4 FFs

•Low power design

Clock gating

Domain #1

Domain #2
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Multiple Clocks: Problems

49

We have been setting very strict rules to make our digital 

circuits safe: using a forbidden zone in both voltage and time 

dimensions

Digital Values: distinguishing 

voltages representing “1” from “0”

Digital Time: setup and hold time 

rules
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Metastability

50

With asynchronous inputs, we have to break the rules: we 

cannot guarantee that setup and hold time requirements are met 

at the inputs!

What happens after timing violation?

?

D

Q

clk setup hold
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Mechanical Metastability

Launch a golf up a hill, 3 

possible outcomes:

•Hit lightly: Rolls back

•Hit hard: Goes over

•Or: Stalls at the apex

That last outcome is not 

stable:

•A gust of wind

•Brownian motion

•Can you tell the eventual 

state?

State A

State A State B

51
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Metastability in Digital Logic

Our hill is related to the VTC (Voltage Transfer Curve).

The higher the gain thru the transition region, the steeper the 

peak of the hill, the harder to get into a metastable state.

We can decrease the probability of getting into the metastable

state, but we can’t eliminate it…

52
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Metastability in Digital Logic

Metastability

53
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Metastability in Digital Logic

Fixed clock edge

Change the edge of 

inputs

The input edge is moved 

in steps of 100ps and 1ps 

The behavior of outputs

•„Three‟ possible states

•Will exit metastability

How long it 

takes to exit 

Metastability?

54
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Exit Metastability

Define a fixed-point voltage, VM, (always have) such that VIN = VM

implies VOUT = VM

Assume the device is sampling at some voltage V0 near VM

The time to settle to a stable value depends on (V0 -VM); its 

theoretically infinite for V0 = VM

55
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Exit Metastability

The time to exit metastability depends logarithmically on (V0 -VM)

The probability of remaining metastable at time T is 

Time (ns)

Voltage

Log(V-VM)

56
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MTBF: The probability of being metastable at time S?

Two conditions have to be met concurrently

•An FF enters the metastable state

•An FF cannot resolve the metastable condition within S

The rate of failure

•TW: time window around sampling edge incurring metastability

•FC: clock rate (assuming data change is uniformly distributed)

•FD: input change rate (input may not change every cycle)

Mean time between failures (MTBF)

57
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MTBF (Mean Time Between Failure)

Let’s calculate an ASIC for 28nm CMOS process

•τ: 10ps (different FFs have different τ)

•TW=20ps, FC=1GHz

•Data changes every ten clock cycles

•Allow 1 clock cycle to resolve metastability, S=TC

MTBF=4×1029 year !

[For comparison: 

Age of oldest hominid fossil:  5x106 years

Age of earth: 5x109 years]

58
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D      QD      Q

CLK

Da Ds

FF1 FF2

Asynchronous input

Synchronized signal

Global low-skew clock

The Two-Flip-Flop Synchronizer

S=TC

59

?
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The Two-Flip-Flop Synchronizer

Possible Outcomes

60
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The Two-Flip-Flop Synchronizer

Possible Outcomes

61

Open Question: What is the limitation?
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Reading Advice

“Metastability and Synchronizers: A Tutorial”, Ran Ginosar,  

VLSI Systems Research Center, Israel Institute of Technology  
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