
Lund University / EITF35/ Liang Liu 2013

EITF35: Introduction to Structured

VLSI Design

Part 3.1.2: VHDL-4

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF35/ Liang Liu 2013

Outline

Handling Large Designs: Hierarchical

Component

Generics

Configurations

Library and Package

2

Lund University / EITF35/ Liang Liu 2013

Large Scale Design?

3

Lund University / EITF35/ Liang Liu 2013

Hierarchical Design

4

Hierarchical design

•Divided-and-conquer strategy

•Divide a system into smaller parts

•Constructs each module independently

•Recursively: division process can be applied repeatedly and the

modules can be further decomposed

Conquer one

problem each time

Lund University / EITF35/ Liang Liu 2013

Hierarchical Design

5

Example: repetitive-addition multiplier

Lund University / EITF35/ Liang Liu 2013

Hierarchical Design: Advantage

6

Complexity management

•Focus on a manageable portion of the system, and analyze, design

and verify each module in isolation.

•Construct the system concurrently by a team of designers.

•Allows for more readable design files: top-level design file as a simple

integration of smaller building blocks

Design reuse

•Use predesigned modules or third-party cores (e.g., IP cores)

•Use the same module in different design or your future design

Lund University / EITF35/ Liang Liu 2013

VHDL Supporting Hierarchical Design

7

Relevant VHDL constructs

•Component

•Generic

•Configuration

•Library

•Package

•Subprogram

•The component, generic and configuration constructs help to

describe a hierarchical design.

•The library, package, and subprogram help the management

of complicated code

Lund University / EITF35/ Liang Liu 2013

Outline

Handling Large Designs: Hierarchical

Component

Generics

Configurations

Library and Package

8

Lund University / EITF35/ Liang Liu 2013

Component

9

Hierarchical design usually shown as a block diagram

•Specify the module used

•The interconnections among these parts

VHDL component describes structural description in text

How to use a component?

•Component declaration (make known)

•Component instantiation (create an instance)

Lund University / EITF35/ Liang Liu 2013

Component Declaration

10

Component declaration provides information about the external

interface of a component

•The input and output ports

•Relevant parameters

The information is similar to that provided in an entity declaration

component component_name is

generic(

generic_declaration;

generic_declaration;

…

);

port (

port_declaration;

port_declaration;

…

);

end component

Lund University / EITF35/ Liang Liu 2013

Component Initialization

11

Instantiate an instance of a component

•Provide a generic value

•Map formal signals to actual signals

Syntax

Port Map

instance_label: component_name

generic map(

generic_association;

generic_association;

)

port map(

port_association;

port_association;

);

o_q

o_pulse

i_en

i_clk

rst

port_name => signal_name

Lund University / EITF35/ Liang Liu 2013

Component: Design Example

12

Mod-100 counter: 0,1,2, … 98,99,0,1,2, … 98,99,0

Step1: block diagram design

• Design two mod-10 counter

• One for one-digit, one for ten-digit

• Controlled by enable signal: one-digit counter increment every clock, ten-

digit counter increment every ten clocks

Lund University / EITF35/ Liang Liu 2013

Component: Design Example

13

Step2: component design

0 1 9

T

0r_reg

en

pulse

Lund University / EITF35/ Liang Liu 2013

Component: Design Example

14

Step3: component declaration

Lund University / EITF35/ Liang Liu 2013

Component: Design Example

15

Step4: Instantiate and connect

Lund University / EITF35/ Liang Liu 2013

Component: Attention

16

Port Mapping

•Recommend one-to-one mapping (name association)

•Do NOT recommend direct association

•For unused port, keyword “open”

port_name => open

•Do NOT OPEN inputs

•Synthesis software should be able to optimize OPEN output

Lund University / EITF35/ Liang Liu 2013

Outline

Handling Large Designs: Hierarchical

Component

Generics

Configurations

Library and Package

17

Lund University / EITF35/ Liang Liu 2013

Generic

18

Mechanism to pass info into an entity/component

Declared in entity declaration and then can be used as a constant

in port declaration and architecture body

Assigned a value when the component is instantiated

Like a parameter, but HAS TO BE a CONSTANT

Example: step1 declaration

Lund University / EITF35/ Liang Liu 2013

Generic

19

Mechanism to pass info into an entity/component

Declared in entity declaration and then can be used as a constant

in port declaration and architecture body

Assigned a value when the component is instantiated

Like a parameter, but HAS TO BE a CONSTANT

Example: step1 declaration

Declare before port

Can be used in port declaration

Lund University / EITF35/ Liang Liu 2013

Generic

20

Mechanism to pass info into an entity/component

Declared in entity declaration and then can be used as a constant

in port declaration and architecture body

Assigned a value when the component is instantiated

Like a parameter, but HAS TO BE a CONSTANT

Example: step1 declaration

Declare before port

Can be used in port declaration

Lund University / EITF35/ Liang Liu 2013

Generic

21

Example: step 2 utilization

Can also be used to parameterize signals

within an architecture

Lund University / EITF35/ Liang Liu 2013

Generic

22

Example: step3 instantiation

Note the

semicolon “;”

Lund University / EITF35/ Liang Liu 2013

Outline

Handling Large Designs: Hierarchical

Component

Generics

Configurations

Function

Library and Package

23

Lund University / EITF35/ Liang Liu 2013

Configuration

24

Bind a component with an entity and an architecture
•Bind a component with a design entity

•Bind the design entity with a body architecture

•Default binding

Not supported by all synthesis software

Suggestion: Use only in testbench
•Testbench is reused by declaring a different configuration

•Examples:

Behavorial model

Gate-level model

Lund University / EITF35/ Liang Liu 2013

Configuration Daclaration

25

Lund University / EITF35/ Liang Liu 2013

Configuration-Example

configuration THREE of FULLADDER is
for STRUCTURAL
for INST_HA1, INST_HA2: HA
use entity WORK.HALFADDER(CONCURRENT);

end for;
for INST_XOR: XOR
use entity WORK.XOR2D1(CONCURRENT);

end for;
end for;

end THREE;

26

entity name and

component name differs

Lund University / EITF35/ Liang Liu 2013

Suggestion:

27

One entity per file, file name the same with entity name

Do NOT put critical path between component

Lund University / EITF35/ Liang Liu 2013

Outline

Handling Large Designs: Hierarchical

Component

Generics

Configurations

Library and Package

28

Lund University / EITF35/ Liang Liu 2013

Used to declare and store:

•Components

•Type declarations

•Functions

•Procedures

Packages and libraries provide the ability to reuse constructs

in multiple entities and architectures

Libraries and Packages

29

Lund University / EITF35/ Liang Liu 2013

Library is a place to which design units may be compiled

Two predefined libraries are the IEEE and WORK libraries

WORK is the default library

IEEE standard library contains the IEEE standard design units.

• std_logic_1164

• numeric_std

IEEE is non-default library, must be declared:

Design units within the library must also be made visible via

the use clause.

Libraries

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

30

Lund University / EITF35/ Liang Liu 2013

Packages

Declarations in an architecture
•Consist of the declarations of constants, data types, components,

functions and so on

•Must be duplicated in many different design units, for hierarchical

design

Packages
•Organize and store declaration information

Data type

Function

constant

31

Lund University / EITF35/ Liang Liu 2013

Package declaration may contain

Basic declarationsSignal declarations

Attribute declarationsComponent declarations

Types, subtypes Constants SubprogramsUse clause

Packages Declaration

32

Lund University / EITF35/ Liang Liu 2013

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

package my_package is

type binary is (on, off);

constant C_ROUTING_ID_BITS: integer := 3;

component counter_dec is

generic (constant WIDTH: integer);

port (

clk_in, rst_n: in std_logic;

en: in std_logic;

q: out std_logic_vector (WIDTH-1 downto 0);

puls: out std_logic

);

end component;

end my_package;

Packages Declaration: Example

33

Lund University / EITF35/ Liang Liu 2013

A package is made visible using the use clause

use the binary and counter_dec declarations

use work.my_package.binary;

use work.my_package.counter_dec;

... entity declaration ...

... architecture declaration ...

use all of the declarations in package my_package

use work.my_package.all;

... entity declaration ...

... architecture declaration ...

Package: How to use?

use library_name.package_name.item

34

Lund University / EITF35/ Liang Liu 2013

Reading advice

35

FSMD: RTL Hardware Design Using VHDL, Chapter 11,

P373-P420

Hierarchical VHDL: RTL Hardware Design Using VHDL,

Chapter 13, P473-P498

