
Lund University / EITF35/ Liang Liu 2013

EITF35: Introduction to Structured

VLSI Design

Part 2.2.2: VHDL-3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF35/ Liang Liu 2013

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

2

Lund University / EITF35/ Liang Liu 2013

VHDL code should be clear so that the pre-designed

cells can be inferred

•Again, as an architecture designer, you need to be very

familiar with the available elements

VHDL code of storage elements

•Positive edge-triggered D FF

•Negative edge-triggered D FF

•D FF with asynchronous reset

•D Latch (DON’T USE)

Inference of Basic Storage Elements

3

Lund University / EITF35/ Liang Liu 2013

No else branch

Note the sensitivity list (only clk)

Positive edge-Triggered D FF

4

Lund University / EITF35/ Liang Liu 2013

Negative edge-Triggered D FF

5

Lund University / EITF35/ Liang Liu 2013

D FF with Async. Reset

6

Lund University / EITF35/ Liang Liu 2013

D Latch (Learn How to Avoid)

7

Bad1:
process(sA,sB,a,b)

begin

if sA=‟1‟ then

z<=a;

elsif sB=‟1‟ then

z<=b;

end if;

end process Bad1;

a

b

sA sB

z
L

OR

Bad2:
process(sA,a,b)

begin

if sA=‟1‟ then

f<=a;

end if;

end process Bad2;

Bad3: process(I3,I2,I1,I0,S)

begin -- use case statement

case S is

when "00" => O <= I0;

when "01" => O <= I1;

when "10" => O <= I2;

end case;

end process Bad3;

Lund University / EITF35/ Liang Liu 2013

Exercise

8

c1: process(clk)

begin

if (clk ‟event

and clk =„1‟)then

q<=„1‟;

end if;

end process c1;

c2: process(clk)

begin

if (clk

=„1‟)then

q<=„1‟;

end if;

end process c2;

c3: process(clk)

begin

if (clk

=„1‟)then

q<=„1‟;

else

q<=„0‟;

end if;

end process c3;

1

0

clk

q

Lund University / EITF35/ Liang Liu 2013

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

9

Lund University / EITF35/ Liang Liu 2013

Sync Enable

•Means the enable signal is controlled by clock

Design Examples: D FF with sync enable

10

Lund University / EITF35/ Liang Liu 2013

architecture two_seg_arch of dff_en is

signal q_reg:std_logic;

signal q_next:std_logic;

begin

-- D FF

process (clk, reset)

begin

if (reset=‟l‟) then

q_reg <= „0‟;

elsif (clk‟event and c1k=‟l‟) then

q_reg <= q_next;

end if ;

end process;

-- next-state logic

q_next <= d when en =‟l‟ else

q_reg;

-- output logic

q <= q_reg;

end two_seg_arch;

Design Examples: D FF with sync enable

11

Multi-Segment

Recommended!

Lund University / EITF35/ Liang Liu 2013

Shift Registers

•Shifts the content of the register left or right 1 bit in each clock cycle

•Major application: send parallel data through a serial line

Design Examples: Shift-right registers

12

Lund University / EITF35/ Liang Liu 2013

If we group the registers together: multi-segment form

Design Examples: Shift-right registers

13

Lund University / EITF35/ Liang Liu 2013

Design Examples: Shift-right registers

14

architecture two_seg_arch of shift_right_register is

signal r_reg : std_logic_vector (3 downto 0);

signal r_next : std_logic_vector (3 downto 0);

begin

process (clk,reset)

begin

if(reset= „1‟) then

r_reg <= (others=>‟O‟);

e1sif (clk ‟event and clk= ‟1‟) then

r_reg <= r_next;

end if ;

end process;

r_next <= d & r_reg(3 downto 1);

q <= r_reg(0);

end two_seg_arch;

Lund University / EITF35/ Liang Liu 2013

Binary Counter

•Circulates through a sequence that resembles the unsigned binary number

•An n-bit binary counter has a register with n FFs

•Increments the content of the register every clock cycle, counting from 0 to

2n - 1 and then repeating.

Design Examples: Binary Counter

15

Lund University / EITF35/ Liang Liu 2013

entity binary_counter4_pulse is

port(clk, reset: in std_logic;

max_pulse: out std_logic;

q: out std_logic_vector (3 downto 0);

end binary_counter4_pulse ;

architecture two_seg_arch of binary_counter4_pulse is

signal r_reg : unsigned (3 downto 0) ;

signal r_next : unsigned (3 downto 0) ;

process (clk, reset)

begin

if (reset=„1') then r_reg <= (others=> '0') ;

elsif (clk'event and clk=„1') then r_reg <= r_next;

end if;

end process;

r_next <= r_reg + 1; -- incrementor

q <= (r_reg);

max_pulse <= „1' when r_reg= “1111” else„0‟; -- output

end two_seg_arch;

Design Examples: Binary Counter

16

q <= std_logic_vector(r_reg);

Lund University / EITF35/ Liang Liu 2013

Design Examples: Binary Counter

17

How to wrap around: 1111->0000

•Poor code (‘Wrong’ code)

bad:r_next <= (r_reg + 1) mod 16

In the IEEE numeric_std package, “+” on the unsigned data

type is modeled after a hardware adder

Wrap around automatically when the addition result exceeds the

range.

Mod operation may cannot be synthesized

Good:r_next <= (r_reg + 1)

Lund University / EITF35/ Liang Liu 2013

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

18

Lund University / EITF35/ Liang Liu 2013

Coding Style: Segment

19

One-segment

•Describe storage and combinational logic in one process

•May appear compact for certain simple circuit

•But it can be error-prone

Is integration

always better???

Lund University / EITF35/ Liang Liu 2013

Segment: D FF with sync enable

20

architecture one_seg_arch of dff_en is

begin

process (clk,reset)

begin

if (reset=‟1‟) then

q < = ‟0‟ ;

elsif (clk‟event and clk=‟1‟) then

if (en=‟1‟) then

q <= d;

end if;

end if ;

end process;

end one_seg_arch;

Lund University / EITF35/ Liang Liu 2013

Segment: Binary Counter

21

What will be

the circuit?

Lund University / EITF35/ Liang Liu 2013

Segment: Binary Counter

22

A 1-bit register is inferred for the max_pulse signal.

The register works as a buffer and delays the output by one

clock cycle,

and thus the max_pulse signal will be asserted when

r_reg="0000".

Lund University / EITF35/ Liang Liu 2013

Segment: Summary

23

Two-segment code

•Separate memory segment from the rest

•Has a clear mapping to hardware component

•Is preferred and recommended

One-segment code

•Mix memory segment and next-state logic/output logic

•Can sometimes be more compact

•No clear hardware mapping

•Error prone

Lund University / EITF35/ Liang Liu 2013

Segment: Summary

24

Keep the hardware and the corresponding coding

rule in mind and then go ahead!

•Signals inside the clk'event and clk=„1' branch

are referred as registers

Lund University / EITF35/ Liang Liu 2013

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

25

Lund University / EITF35/ Liang Liu 2013

Variables in Sequential Circuit

26

Signals always imply an FF under clk‟event and clk=‟1‟

condition

When you don’t want to infer an FF in a one-segment process

Variable is local in a process and is not needed outside

Variable may imply differently

•Variable is used after it is assigned: get a value every time when the

process is invoked

no register is inferred

•Variable is used before it is assigned: use the value from the previous

process execution

FF or register need to be inferred

Lund University / EITF35/ Liang Liu 2013

Variables in Sequential Circuit: Example

27

architecture arch of varaible_ff_demo is

signal tmp_sigl: std_logic;

begin

process (clk)

begin

if (clk‟event and clk=‟1‟) then

tmp_sig1 <= a and b;

ql <= tmp_sigl;

end if ;

end process;

Registers are inferred

q1 is one clock later than

tmp_sig1

Lund University / EITF35/ Liang Liu 2013

Variables in Sequential Circuit: Example

28

architecture arch of varaible_ff_demo is

begin

process (clk)

variable tmp_var2: std_logic; -- declare in process

begin

if (clk‟event and clk=‟1‟) then

tmp_var2 := a and b; -- notice assignment format

ql <= tmp_var2;

end if ;

end process;

Use variable

tmp_sig2 is used after it

is assigned

Just a hard wire, no Reg.

is inferred

Lund University / EITF35/ Liang Liu 2013

Variables in Sequential Circuit: Example

29

architecture arch of varaible_ff_demo is

begin

process (clk)

variable tmp_var2: std_logic; -- declare in process

begin

if (clk‟event and clk=‟1‟) then

ql <= tmp_var2;

tmp_var2 := a and b; -- change the assignment order

end if ;

end process;

2min: Draw the

corresponding circuits

tmp_var2

Lund University / EITF35/ Liang Liu 2013

Outline

Inference of Basic Storage Element

Some Design Examples

•DFF with enable

•Register shifter

•Counter

Coding Style: Segment

Variables in Sequential Circuit

Poor Design Examples

30

Lund University / EITF35/ Liang Liu 2013

Poor Design 1: Misuse of asynchronous reset

31

Example: a mod-10 counter: 0,1,2 …,7,8,9, 0,1,2…, 7,8,9,0

Lund University / EITF35/ Liang Liu 2013

Poor Design 1: Misuse of asynchronous reset

32

library ieee;use ieee.std_logic_1164.all;use ieee.numeric_std.all;

entity modl0_counter is

port(clk,reset: in std_logic;

q:out std_logic_vector (3 downto 0));

end modl0_counter;

architecture poor_async_arch of mod10_counter is

signal r_reg: unsigned (3 downto 0) ;

signal r_next: unsigned (3 downto 0) ;

signal async_clr: std_logic;

begin

process (clk,async_clr)

begin

if (async_clr=„1') then r_reg <= (others=>„0');

elsif(clk'event and clk=„1‟) then r_reg<=r_next;

end if ;

end process;

async_clr <='1' when (reset='l‟or r_reg="1010") else „0‟;

r_next <= r_reg + 1;

q <= std_logic_vector(r_reg);

end poor_async_arch;

Lund University / EITF35/ Liang Liu 2013

Poor Design 1: Misuse of asynchronous reset

33

Problems

•Glitch in counter: r_reg goes to 10 and then reset, due to the delay of

comparator

•Glitches in aync_clr can reset the counter

•Timing analysis?

Lund University / EITF35/ Liang Liu 2013

Poor Design 1: Misuse of asynchronous reset

34

Remedy

architecture two_seg of mod10_counter is

signal r_reg: unsigned (3 downto 0) ;

signal r_next: unsigned (3 downto 0) ;

begin

process (clk,reset)

begin

if (reset =„1') then r_reg <= (others=>„0');

elsif(clk'event and clk=„1‟) then r_reg<=r_next;

end if ;

end process;

r_next <= (others=>‟0‟) when (r_reg=9) else r_reg+1;

q <= std_logic_vector(r_reg);

end two_seg;

Lund University / EITF35/ Liang Liu 2013

Something to remember

35

Strictly follow the synchronous design methodology; i.e., all

registers in a system should be synchronized by a common

global clock signal.

The memory components should be coded clearly so that a

predesigned cell can be inferred from the device library.

Isolate the memory components from the VHDL description and

code them in a separate segment. One-segment coding style is

not advisable.

Asynchronous reset, if used, should be only for system

initialization. It should not be used to clear the registers during

regular operation

Unless there is a compelling reason, a variable should not be

used to infer a memory component.

Lund University / EITF35/ Liang Liu 2013

Reading advice

36

RTL Hardware Design Using VHDL: P213-P254

Lund University / EITF35/ Liang Liu 2013

Thanks

37

