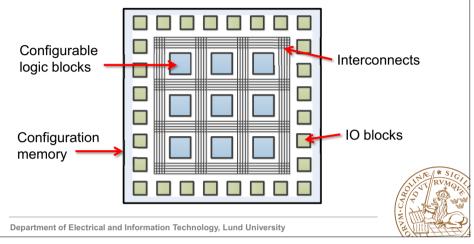


EITF35: Introduction to Structured VLSI Design

Introduction to FPGA design

Chenxin Zhang Chenxin.Zhang@eit.lth.se

Department of Electrical and Information Technology, Lund University


WWW.FPGA

- What is FPGA?
 - Field Programmable Gate Array
 - Configurable logic blocks + interconnects + IOs + memory
- Why do we use it?
 - High performance & Flexible
 - Shorter time to market
- Where do we use it?
 - Prototyping
 - Computer vision
 - Medical imaging
 - Software-defined radio

_				
	٠	٠	٠	

WWW.FPGA

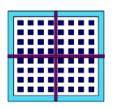
- What is FPGA?
 - Field Programmable Gate Array

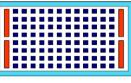
FPGA vs. Microprocessor

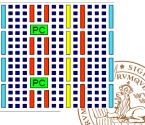
	Intel Itanium 2	Xilinx Virtex-II Pro (XC2VP100)		
Technology	0.13 µm	0.13 µm		
Clock speed	1.6 GHz	180 MHz		
Internal memory bandwidth	102 GBytes/S	7.5 TBytes/S		
# Processing units	5 FPU (2 MACs+1 FPU) 6 MMU 6 Integer units	212 FPU or 300+Integer units or 		
Power consumption	130 W	15 W		
Peak performance	8 GFLOPs	38 GFLOPs		
Sustained performance	~2GFLOPs	~19 GFLOPs		
IO/External memory bandwidth	6.4 GBytes/S	67 GBytes/S		
		(Courtesy: Nallatech)		

FPGA devices

- · Manufactures:
 - Xilinx: Spartan, Kintex, Virtex
 - Altera: Cyclone, Arria, Stratix
 - Lattice Semiconductor: flash, low power
 - Microsemi (Actel): antifuse, mix-signal
 - Achronix: high speed
 - QuickLogic: application-specific (handheld)




XILINX[®]


Department of Electrical and Information Technology, Lund University

FPGA architectures

- Early FPGAs
 - N x N array of unit cells (CLB + routing)
 - Special routing along center axis
- Next Generation FPGAs
 - M x N unit cells
 - Small block RAMs around edges
- More recent FPGAs
 - Added block RAM arrays
 - Added multiplier cores
 - Adders processor cores

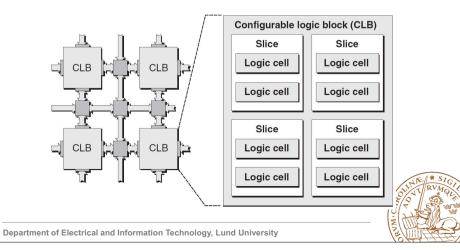
Some FPGA boards

- ERICSSON F500
- Xilinx Virtex-5 OpenSPARC Evaluation Platform
 http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,795&Prod=XUPV5
- Xilinx Virtex-II Pro Development System
 http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,794&Prod=XUPV2P
- We use Xilinx Spartan-3 board in this course!
 http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,519&Prod=S3BOARD

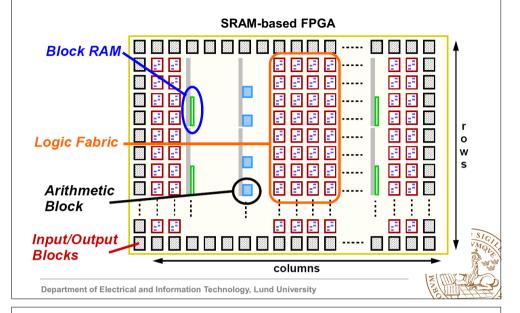
Department of Electrical and Information Technology, Lund University

FPGA architecture trends

- Memories
 - Single & Dual-port RAMS
- Digital Signal Processor Engines
- Embedded Processors
 - Hardcore (dedicated processors)
 - Soft core (synthesized from a HDL)
- Hign speed/performance I/O connectivity
 - PCIe interface vlock
 - I/O transceiver
- Clock management blocks

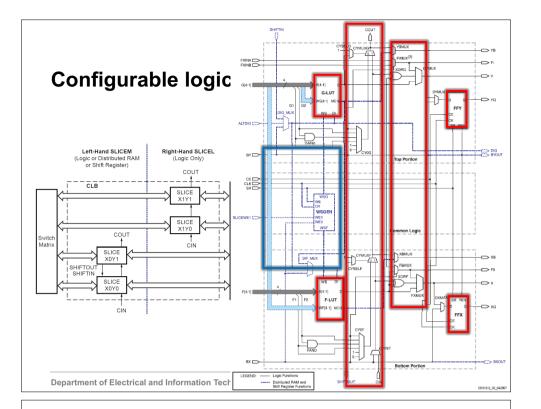


Programming technology

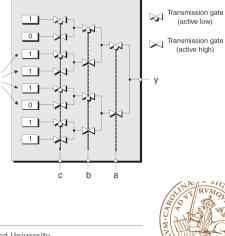

Feature	SRAM	Antifuse	Flash/E2PROM		
Technology	State-of-the-art	One or more generations behind	One or more generations behind		
Reprogrammable	Yes (in system)	No	Yes (in system or offline)		
Reprogramming speed	Fast		3x slower than SRAM		
Volatile	Yes	No	No		
Instant-on	No	Yes	Yes		
Security	Acceptable	Very Good	Very Good		
Size of Config. Cell	Large (Six transistors)	Very small	Medium-small (Two transistors)		
Power consumption	Medium	Low	Medium		
partment of Electrical and	ANN CAR				

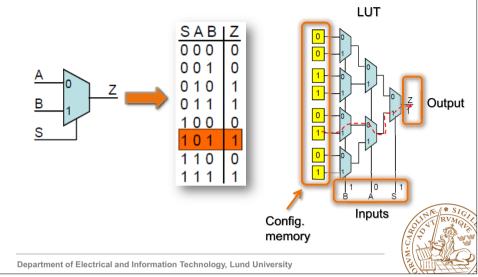
Configurable logic block (CLB) (I)

One CLB contains four slices

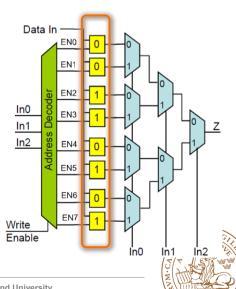

Xilinx FPGA architecture (Spartan-3)

Configurable logic block (CLB) (II)


- One CLB contains four slices
- Each slice:
 - Two Look-up tables (LUTs)
 - Two D Flip-Flops (DFFs)
 - Multiplexers and arithmetic gates
 - Carry logic
- Left-hand slice (SLICEM)
 - Distributed RAM
 - Shift register


Look-up table (LUT) (II)

- · Inputs are used as a pointer into a LUT.
- Decoded using a hierarchy of transmissiongate MUXs.
- Transmission-gate: "pass" or "high-impedance".

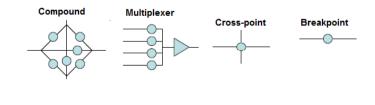


Look-up table (LUT) (I)

LUT based RAM (Distributed RAM)

- Normal LUT performs "read" operation.
- For "write" operation, address decoders + write enable.
- Can be concatenated to created larger RAMs.
- · Can also be used as shift registers (some of the LUTs).

Xilinx Spartan-3 FPGAs

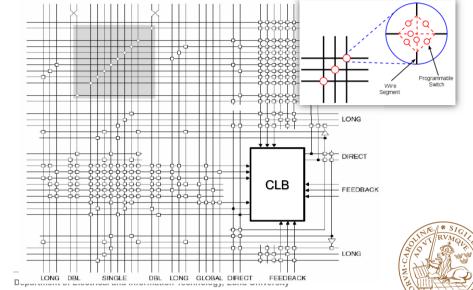

• XC3S200:

- 480 CLBs = 480*4 Slices = 480*4*2*(4-input LUTs + registers)
- 12 18-kbit dual-port BRAMs = 12*18 Kb = 216 Kbits
- Distributed RAM: 480*2*2*2^4 = 30,720b = 20Kb (only 2 LUTs per slice)

	CLB Array Equivalent (One CLB = Four Slices) Dist		Distributed	Block RAM				Maximum			
Device	System Gates	Logic Cells ¹	Rows	Columns	Total CLBs	RAM Bits (K=1024)	Bits (K=1024)	Dedicated Multipliers	DCMs	Maximum User I/O	Differential I/O Pairs
XC3S50 ²	50K	1,728	16	12	192	12K	72K	4	2	124	56
XC3S200 ²	200K	4,320	24	20	480	30K	216K	12	4	173	76
XC3S400 ²	400K	8,064	32	28	896	56K	288K	16	4	264	116
XC3S1000 ²	1M	17,280	48	40	1,920	120K	432K	24	4	391	175
XC3S1500	1.5M	29,952	64	52	3,328	208K	576K	32	4	487	221
XC3S2000	2M	46,080	80	64	5,120	320K	720K	40	4	565	270
XC3S4000	4M	62,208	96	72	6,912	432K	1,728K	96	4	633	300
XC3S5000	5M	74,880	104	80	8,320	520K	1,872K	104	4	633	300
Notes: 1. Logic Cell 2. These dev	= 4-input L rices are av	.ook-Up Table vailable in Xilin	(LUT) p ix Autom	lus a 'D' flip-i iotive versior	flop. "Equiv is as descr	alent Logic Cell ibed in <u>DS314</u> : qy, Lung Un	s" equals "Tota Spartan-3 Auto	al CLBs" x 8 Lo	ogic Cells/	CLB x 1.125	

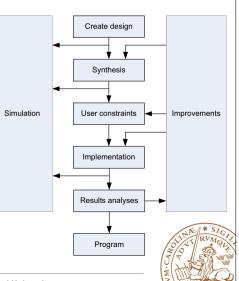
Programmable Interconnects (II)

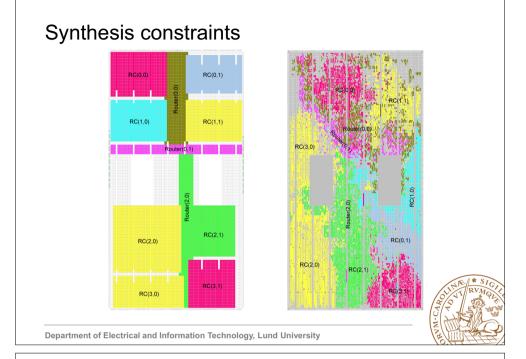
- Programmable swich, also called programmable interconnect points (PIP).
- Implemented using transmission gates.
- Several types of PIPs:


Wire A

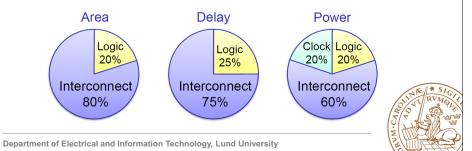
Wire B

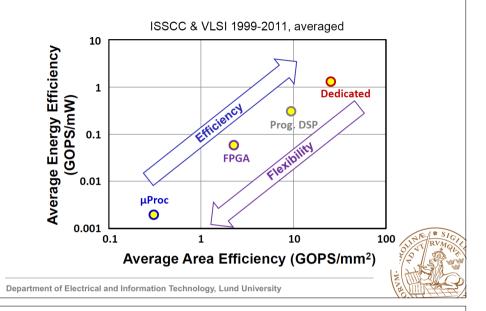
config


bit


Programmable Interconnects (I)

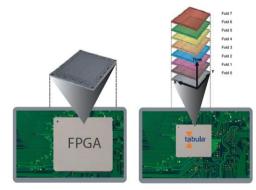
FPGA Design flow

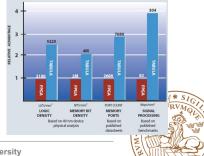

- Synthesis
 - Parses HDL design
 - Infers Xilinx primitives
 - Generates design netlist
- Translate
 - Merges incoming netlists and constraints into a design file
- Map
 - Maps (places) design into the available resources on the target device
- Place and Route
 - Places and routes design



FPGAs are inefficient

- · Compared to ASICs, penalties in FPGAs:
 - Area: 17 54x
 - Speed: 3 7x
 - Power: 6 62x
- Main culprit: INTERCONNECT!


Are FPGAs perfect?



Tabula Spacetime

- Ultra-rapid full/partial reconfiguration with makes it possible to fold more functions onto the same hardware: multi-GHz rates
- Their claim:
 - 2.5x logic density
 - 3.7x DSP performance

www.tabula.com

Coarse-grained reconfigurable architecture

- Currently in FPGA
 - Dedicated building blocks: multiplier, DSP core, processor
 - Partial configuration
- Moving torwards coarse-grained architecture:
 - Block-level instead of bit manipulations
 - Lower area and power consumption
 - High-level programming: e.g. xilinx vivado
 - Run-time configuration

Department of Electrical and Information Technology, Lund University

References

- Clive "Max" Maxfield, "The Design Warrior's Guide to FPGAs Devices, Tools and Flows", ELSEVIER, 2004.
- Bill Jason P. Tomas, "Introduction to Field Programmable Gate Arrays (FPGAs)".
- Xilinx, "Spartan-3 FPGA Family Data Sheet".

