EITF35: Introduction to Structured VLSI Design

Part 1.2.1: Finite State Machines

Liang Liu
liang.liu@eit.Ith.se

Outline

\square FSM Overview
 -FSM Representation

-examples
\square Moore vs. Mealy Machine
-Exercise

FSM Overview

\square It has at most a finite number of states
\square Models for representing sequential circuits
\square Used mainly as a controller in a large system
\square Moore vs. Mealy machines

Abstraction of state elements

\square A FSM consists of several states. Inputs into the machine are combined with the current state of the machine to determine the new state or next state of the machine.
\square Depending on the state of the machine, outputs are generated based on either the state or the state and inputs of the machine.
\square Divide circuit into combinational logic and state

Outline

■FSMI Overview
-FSM Representation
■Moore vs. Mealy Outputs
■Exercise

FSM Representation

\square Can be represented using a state transition table which shows the current state, input, any outputs, and the next state.

Input Current State	Input $_{\text {o }}$	Input $_{1} \quad \ldots .$. Input $_{\text {n }}$
State ${ }_{0}$ State $_{1}$ State $_{n}$	Next State / Output \qquad -••• 	Next State / Output

FSM Representation

\square It can also be represented using a state diagram which has the same information as the state transition table.

- Mealy Output

Outputs $=\mathrm{F}$ (Inputs, Current state)
Next state = F(Inputs, Current state)
\square Moore Output
Outputs $=\mathrm{F}$ (Current state)
Next state $=\mathrm{F}$ (Inputs, current state)
Input / Mealy Output

Example 1: A Mod-4 Synchronous Counter

\square Function: Counts from 0 to 3 and then repeats.
\square It has a clock (CLK) and a RESET input.
\square Outputs appear as a sequence of values (q1 and q0)
\square As the outputs are generated, a new state (s1 s0) is generated which takes on values of $00,01,10$, and 11.

State Transition Table of Mod-4 Counter

State Transition Diagram for the Mod-4 Counter

Example 2: Lock

\square Pushing: * $\{$ A; B; B; A \} => Open

- $A \& B$ never push at the same time
- Have to release the button before next pushing

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ...
\square Debounce before next pushing

Finish the state graph for the Lock-FSM (5min)

State Diagram for lock-FSM

$\square A$ and B are never pressed at the same time ... \square Debounce before next pushing

Hmmm: Is this a Mealy FSM or a Moore FSM?

Outline

ㅁFSMI Overview
■FSM Representation
\square Moore vs. Mealy Outputs
■Exercise

Output Timing: Moore

Will be entered with next clock cycle

\square... a Moore machine is not able to produce A->1 until the next clock when it enters s1

Output Timing: Mealy

\square When in s0, a Mealy machine may produce A->1 immediately in response to R ->1

Output Timing: Moore and Mealy

Moore vs. Mealy (summary)

\square A Moore machine produces glitch free outputs.
\square A Moore machine produces outputs depending only on states, and in some situations this may allow using a faster clock.
\square A Mealy machine can be specified using less states because it is capable of producing different outputs in a given state.
\square A Mealy machine can be faster because an output may be produced immediately instead of at the next clock tick.
\square Which one is better?
-Edge sensitive control
\square E.g., enable signal of counter
\square Both can be used but Mealy is faster
-Level sensitive control
$\square E . g$., write enable signal of SRAM

- Moore is preferred

FSM Homework: Vending Machine

\square Operation of Vending Machine

- When the user puts in money, money counter tells the control unit, the amount of money inserted in the Vending Machine.
- When the user presses the button to purchase the item that he wants, the control unit dispenses the product if correct amount is inserted.
- If there is any change, machine will return it to the user.

Select Bottom	Product	Price
S1	Snakes	10
S2	Coffee	15
S3	Cold Drink	20
S4	Candies	20

Coins
1 SEK
5 SEK
10 SEK

?

