

EITF35: Introduction to Structured VLSI Design

Part1.1.1: Course Introduction

Liang Liu liang.liu@eit.lth.se

Course Factor

□ Introduction to Structured VLSI (very large scale integration) Design (7.5HP)

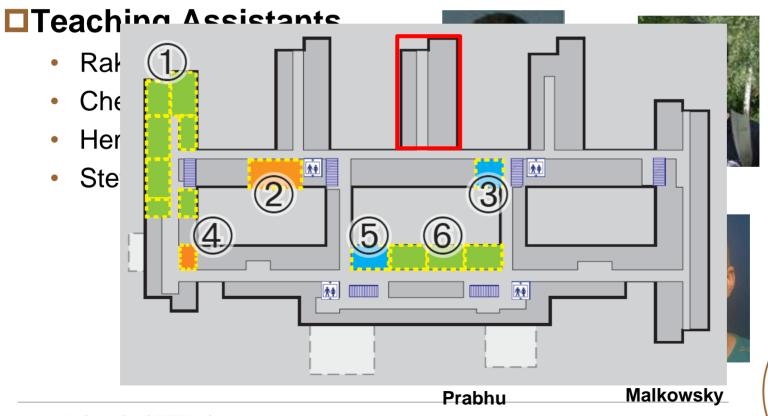
http://www.eit.lth.se/index.php?ciuid=570&L=1

Course is a pre-requisite for ETIN35- IC-project 1, digital

Outline

- **□** Course Objective
- □ Teachers
- Lectures and Labs
- **□** Language, Tools, Device
- Assignments
- Examination

Course Objective


- □ To introduce the basic concept and knowledge on digital VLSI realization
 - Typical function blocks of a large digital system, state machines, datapaths, storage elements
 - Optimization techniques for area, speed, and power
- To provide the basic VHDL knowledge, design flow and tool training
- □ To provide real-life digital VLSI design experience
 - Fast prototyping several assignments and projects on commercial FPGA platform

Teachers

□Lecture

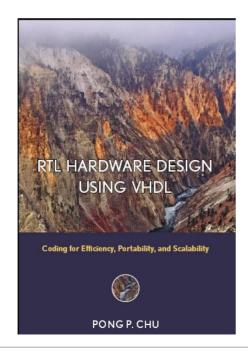
- Liang Liu, post-doc researcher
- Email: <u>liang.liu@eit.lth.se</u>
- Room: E2342
- Homepage: http://www.eit.lth.se/staff/Liang.Liu

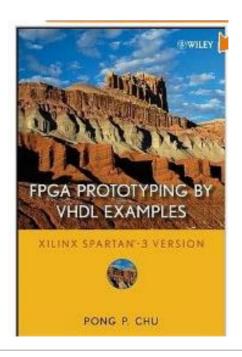
Guest Lecturers

□Guest Lecturers from EIT

- Erik Larsson, Associate Professor
- Email: erik.larsson@eit.lth.se
- Homepage: http://www.eit.lth.se/staff/Erik.Larsson

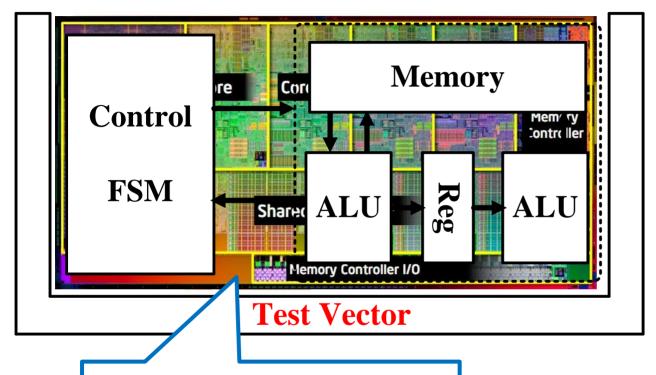
□Invited Lecturers from Industry


Book Recommendation


□RTL Hardware Design Using VHDL

- Coding for Efficiency, Portability, and Scalability
- Pong P. CHU

□FPGA Prototyping by VHDL Examples


- Xilinx Spartan-3 Version
- Pong P. CHU

Course Content & Schedule

- □Concept &Theory
- **□VHDL** Knowledge
- □Assignment & Project

- Overview
- Controller
 - FSM
- Data-Path
 - Combinational circuit
 - Sequential circuits
 - Storage elements
- □ Test & Verification
- **□** FPGA

Lectures and Labs

- □ Lectures (10)
 - Monday: 15:00-17:00 in E:2311
 - Tuesday: 08:00-10:00 in E:A
 - In the 1st week a 3rd lecture is scheduled for Fri (6th Sept.) at 13:00 in MA03.
- □ Labs E:4121 Group A Group B
 - Tuesday 13:00-15:00, 15:00-17:00
 - Wednesday 08:00-10:00, 10:00-12:00
 - Friday 08:00-10:00, 10:00-12:00 13:00-17:00 (approval)
 - Will present the assignments and the corresponding tool tutorial before the lab
 - Each group will have 3 lab slots with TA's per week
 - Drop-in with TA support Wednesday 15:15-17:00
- □ Labs are accessible 24/7 if not occupied by other courses
- You need to sign up for the lab before you can get access to the 4th floor.

Language, Tools, Device

□ Language

VHDL will be used to develop the circuits

VHDL

□Tools

- Modelsim (QuestaSim): VHDL simulator
- ISE Design Suite (v14.6)

□ Device

XILINX Spartan 3

Assignments

□To pass the course, 3 assignments need to get

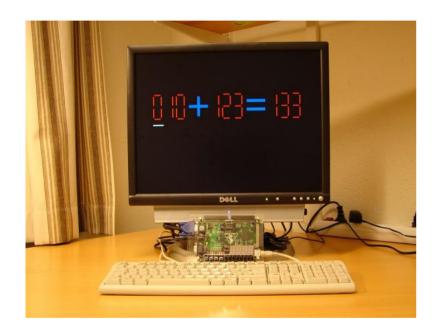
approved

Sequence Detector

■ Simulation

Keyboard Controller

□ FPGA implementation


Alrithmetic Logic Unit (ALU)

□ FPGA implementation

■Assignments approved in time will result in grade 3

Assignments cont'd

□Extra projects are required to get grade 4 /5

- FPGA implementation
 - □ ALU with input memory
 - □ ALU output on VGA
- Squre-root funtion in the ALU

Examination

Before the lab

- □All assignments must be prepared and handed in
- ■Without preparation you need to pass a test to be able to continue the lab.
- □Test must not be failed more than twice.

Examination cont'd

Design Approval

- □All assignments must be demonstrated to the TA's to get approved.
- □Students need to demonstrate their understanding of the assignment to get it approved.
- □Graded as a group, but individual grading may be applied if an "unbalance" is discovered.
- □Both team members need to be present at design approval.

Questions?

