ARP, Fragmentation, Address aggregation

Why Address Resolution?

- For transport on a link we need to know the link layer addresses
- IP uses IP address
- Address Resolution:
 - Method for mapping a global network layer address to a local link layer address

ARP (1)

ARP (2)

Fragmentation and Re-assembly

- Protocol exchanges data between two entities
- Lower-level protocols may need to break data up into smaller blocks, called fragmentation
- Reasons for fragmentation:
 - Network only accepts blocks of a certain size
 - Moreefficient error control and smallerretransmission units
 - Fairer access to shared facilities
 - Smaller buffers
- Disadvantages:
 - Smaller buffers
 - More interrupts and processing time

Fragmentation

- Needed when IP datagram size > MTU
- IPv4
 - Performed by the router meeting the problem
- IPv6
 - Performed by the source router only
- Defragmentation by destination host

D: Do not fragment

M: More fragments

Maximum datagram size

H	ľ	a	ľ	Υ	١	ϵ
---	---	---	---	---	---	------------

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

Fragmentation Re-assembly

Fragmentation example

What with TCP/UDP header?

- Where is a TCP or UDP header in fragments?
- Problem?

Figure 14.4 Fragmentation Example

Forwarding: Address aggregation

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	Default	m4

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	Default	m1

Routing table for R2

Routing table for R1

Forwarding: Longest mask matching

Routing ta	ble for R1
------------	------------

Mask	Network address	Next-hop address	Interface
/26	140.24.7.192		m0
/??	???????	????????	m1
/0	0.0.0.0	Default	m2

Forwarding: Hierarchical routing

