ARP, Fragmentation, Address aggregation

Why Address Resolution?

- For transport on a link we need to know the link layer addresses
- IP uses IP address
- Address Resolution:
- Method for mapping a global network layer address to a local link layer address

ARP (1)

ARP (2)

Fragmentation and Re-assembly

- Protocol exchanges data between two entities
- Lower-level protocols may need to break data up into smaller blocks, called fragmentation
- Reasons for fragmentation:
- Network only accepts blocks of a certain size
- Moreefficient error control and smallerretransmission units
- Fairer access to shared facilities
- Smaller buffers
- Disadvantages:
- Smaller buffers
- More interrupts and processing time

Fragmentation

- Needed when IP datagram size > MTU
- IPv4
- Performed by the router meeting the problem
- IPv6
- Performed by the source router only
- Defragmentation by destination host

D: Do not fragment M : More fragments

Maximum datagram size

Frame

Protocol	MTU
Hyperchannel	65,535
Token Ring $(16 \mathrm{Mbps})$	17,914
Token Ring $(4 \mathrm{Mbps})$	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

Fragmentation Re-assembly

Fragmentation example

Fragment 3

What with TCP/UDP header?

- Where is a TCP or UDP header in fragments?
- Problem?

Figure 14.4 Fragmentation Example

Forwarding: Address aggregation

Forwarding: Longest mask matching

Mask	Network address	Next-hop address	Interface
$/ 26$	140.24 .7 .192	---------	$\mathrm{m0}$
$/ ? ?$???????	?????????	m 1
$/ 0$	0.0 .0 .0	Default	m 2

Forwarding: Hierarchical routing

