EITF25 Internet-Techniques and Applications Stefan Höst

L6 Networking and IP

Data communication

In reality, the source and destination hosts are very seldom on the same network, for example web surf.

Internetworking

We need protocols and mechanisms for sending data across networks of different types.

Collision domain

All hosts that share the same medium belong to a *collision domain*. This adds constraints on the size of the shared link.

Domain

Bridges

Bridges separate the shared links into several collision domains. The bridge acts as a host on all links and can transfer packets between links.

Hubs

A hub transfers packets from an incoming link to all other links. It therefore works on the physical layer.

Basic principle for a switch

The switch keeps an address table for forwarding of packets. Addressing on layer 2.

Switching

Switching table

Address	Port
71:2B:13:45:61:41	1
71:2B:13:45:61:42	2
64:2B:13:45:61:12	3
64:2B:13:45:61:13	4

Router

Internetworking device

- Passes data packets between networks
- Checks Network addresses
- Uses Routing/forwarding tables

Two functions:

- Routing
- Forwarding

Router, logical layers

Network layer

L3

L2

end-to-end

hop-by-hop

10

Transmission delay

Each router has buffers so that packets can be stored when waiting for service. The end-to-end transmission delay includes both waiting time and transmission time on links.

Routing algorithm

- Find route with least cost between source and destination.
- Update routing tables

Network architecture

- Three stages of networks in Internet:
 - Access networks: close to the user, last mile
 - Aggregation network: aggregation of traffic from/to users
 - Backbone (core) networks: Internet highways

Core (university) network in Sweden

Nordunet

Network layer protocols

- We need a universal address system. This is called the network address.
- We need rules for data forwarding. This is called routing.
- We need entities connecting several networks together and forwarding data between them.
 These are called *routers*.

Internet

- All networks that are part of Internet have one thing in common:
- They all use the same network protocol, Internet Protocol (IP)!
- Sometimes illustrated with a hourglass.

IPv4 addresses

- 32 bits = 4 bytes
- $2^{32} = (2^8)^4 = 256^4 = 4294967296$
- Classful vs. classless hierarchy

- Notations
 - Dotted decimal
 - Slash (CIDR)

Classful addressing

Five address classes defined: A, B, C, (D and E)

Organizations can only get addresses in one of the predefined blocks.

18

Address depletion

- Classful addressing defined as there were very few networks connected to the Internet.
- With the growth of Internet, the address classes did not match the reality.
- Subnetting and supernetting was introduced.
 - Class A and B address blocks divided into subnets.
 - Several Class C address blocks combined into larger blocks called supernets.

Classless addressing

- Addresses in blocks
 - Block size power of 2
 - $N = 2^{32-n}$ host addresses in network

Classless addressing Example

- CIDR = slash notation with mask /n
- 205.16.37.39/28

```
205 16 37 39
11001101.00010000.00100101.00100111
28 1111111.1111111.1111111.11110000
```

11001101.00010000.00100101.00100000

Address space

```
11001101.00010000.00100101.001000000 : 205.16.37.32
```

11001101.00010000.00100101.00101111: 205.16.37.47

Map of IPv4

Problems with IPv4

- Address space too small
- Not designed for real-time applications
- No support for encryption and authentication

Some advantages with IPv6

- Larger address space: 128 bit-long addresses.
- Better header format: base header has constant length (40 bytes). Options can be inserted when needed.
- Support for more security: Encryption and authentication options.
- Support for real-time applications: Special handling of datagram can be requested.

IPv6 addresses

- 128 bits = 16 bytes
- $2^{128} = 3.4 \cdot 10^{38}$
- CIDR (/n-notation) same as IPv4

IPv4 datagram

VER	HLEN	Service	Total length		1	
4 bits	4 bits	8 bits	16 bits			
	Identification		Flags	Fragmentation offset		
	16 bits		3 bits	13 bits		
	to live	Protocol	Header checksum			
	oits	8 bits	16 bits			
Source IP address Destination IP address						

Option

Zķ

IPv6 datagram

Transition: IPv4 \rightarrow IPv6

- Cannot happen overnight
 - Too many independent systems
 - Economic cost
 - IPv4 address space lasted longer than expected
- Coexisence needed
 - Dual stack
 - Tunneling
 - Header translation

Maximum datagram size

Frame

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

Fragmentation

If data from an upper layer cannot fit in one data packet, the data is fragmented (according to some prespecified rules)

Fragmentation

- IPv4
 - Performed by the router meeting the problem
- IPv6
 - Performed by the source router only
- Defragmentation by destination host

Fragmentation field (IPv4)

Forwarding: Address aggregation

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/26	140.24.7.192		m3
/0	0.0.0.0	Default	m4

Mask	Network address	Next-hop address	Interface
/24	140.24.7.0		m0
/0	0.0.0.0	Default	m1

Routing table for R2

Forwarding: Longest mask matching

Mask	Network address	Next-hop address	Interface
/26	140.24.7.0		m0
/26	140.24.7.64		m1
/26	140.24.7.128		m2
/0	0.0.0.0	Default	m3

Routing table for R1

Routing table for R2

Mask	Network address	Next-hop address	Interface
/26	140.24.7.192		m1
/24	140.24.7.0		m0
/??	???????	????????	m1
/0	0.0.0.0	Default	m2

Mask	Network address	Next-hop address	Interface	
/26	140.24.7.192		m0	
/??	???????	????????	m1	R4
/0	0.0.0.0	Default	m2	

Address Resolution Protocol (ARP)

- Mapping of IP addresses to MAC addresses
- Internet
 - Network of networks connected by routers
- Routers/hosts need information
 - Logical (IP) → physical (MAC)

ARP packet

ARP operation

- ARP query broadcast every time a host/router needs a MAC address
- Intended host answers with an ARP response
- ARP cache (table) used to store MAC/IP pairs

- Some IP addresses known from start
 - Default gateway (router) → "rest of Internet"
 - DNS server

ARP request and reply

a. ARP request is broadcast

ARP example

Four use cases for ARP

Case 1. A host has a packet to send to another host on the same network.

Case 3. A router receives a packet to be sent to a host on another network. It must first be delivered to the appropriate router.

Case 2. A host wants to send a packet to another host on another network. It must first be delivered to a router.

Case 4. A router receives a packet to be sent to a host on the same network.