EITF25 Internet-Techniques and Applications
Stefan Host

L4 Data link (part 1)

UNIVERSITY

Previously on EITF25

Digital data

01071101

Y

T

Modulator

Processes I

SCTP TCP ‘ UDP

IP and
other protocols

Underlying
physical
networks

Analog signal

{7

Receiver

Digital data

0

1071 +++101

Link
(or digital signal)

Demodulator

Data Link Layer

Medium Access Control

Access to network

Logical Link Control

Node-to-node error and flow control

Link layer protocols

Link Layer Protocols

The sender and receiver uses a link layer protocol
that provides error control for data that is sent on a

physical link.

application |-Application protocol.,| zpplication

blocks

Link D g Link

bits

‘ Physical protocol
PHY PHY

Framing

Physical layer = bitstream

Link layer = frames

We need logical transmission units
* Synchronisation points

« Switching between users

* Error handling

flag | header data

trailer

flag

Bit stuffing

Flag=01111110
Avoid having the flag pattern (01111110) in the data:

Transmitter
After five consecutive 1s inserta O

Receiver
After five consecutive 1s delete next bit

01111110| header | 101010010101010......... 100101010110 | trailer |01111110

Bit stuffing

Example
Data= 01001111111101011111001001...
Datag,=0100111110111010111110001001...

Error control

Data assumed error-free by higher layers

« Errors occur at lower layers (physical)
Extra (redundant) bits added to data

* Generated by an encoding scheme from data

« Used to resolve (detect or correct) errors

Encoding

& N

DS £xra bits

Typical Error Types

Bit error 0 changed to 1
~ N
O(0[O0|0]|O|O|1T|OpF——>{0O|Of(O|O|T]|O
Sent Received
Burst error Length of burst
error (8 bits)
Sent < >
Ol1T]10|1O0|O(T1(O(O(O 000|011
l l l lCorrupted bits
OlT|1OT1(1(OfT1{O 1100011

Received

Error control

Error detection: the aim is to detect errors

* The transmission protocol decides what to do about
erroneous packages

Error correction: the aim is to correct errors

* Roughly half as many errors can be corrected as can
be detected.

In most communication systems both error
detection and error correction occur

10

Error detection schemes

Simple parity-check code
Cyclic Redundancy Check (CRC)
Checksum

11

Simple Parity-Check Code

Extra bit added to make the total number of 1s in
the codeword

« Even - even parity
e 0Odd - odd parity

dataword codeword

10011100 T 0| = 100111000

Can detect an odd number of errors

12

Simple Parity-Check Code

Transmitter

Xi

Xo

X3

X4

Receiver

X1 | X2 | X3 | X4
Ff 1t

Decision

A A A A

@
2

Transmission

—_—r

X1

Xo

X3

X4

13

Cyclic Redundancy Check (CRC)

Generalise to more (independent) parity bits
Transmitter

Xi

Xo

X3

X4

Yy VvV Vv VYV

VVVl

Generator

v v

Xi

Xo

X3

X4

P P2

Ps

Receiver

X1 | Xz | X3 | X4
Fff1

Transmission

Check Decision
JYVYVYVYYYY A A A A
Xi| X2 | Xa| X4 |P1]P2]Ps

—-

Polynomial representation

The dataword of k bits is represented by a

polynomial, d(x).

The degree of the polynomial is k-1.

1

0

0

0

0

1

1

|

|

|

|

|

|

|

1 O O O 0 1

\

/

1

16+ ox + ox* + o+ 02 + 1x! + 1X°

a. Binary pattern and polynomial

X

+ x + 1

g

b. Short form

CRC: The principle

Objective: Send a dataword d(x) of k bits represented
by a polynomial of degree k-1.

Given: Generator polynomial g(x) of degree m.
Find: Remainder polynomial r(x) such that:

c(x) = d(x) - x™ + r(x)

can be divided by g(x) without remainder.
Codeword c(x) will then be sent to the receiver.

r(x) has degree m-1 or less, and CRC has m bits.

CRC: How it works

Sender:
1. Generate b(x) = d(x) - x™
2. Divide b(x) by g(x) to find r(x)
3. Send c(x) = b(x) + r(x)
Receiver:
1. Divide c’(x) = c(x) + e(x) by g(x)
2. Check remainder r’(x) — if O data correct, c(x) = c’(x)

3. Remove CRC bits from codeword to get dataword

Example: CRC derivation

For dataword 1001, derive CRC using generator
1011.

Data polynomial: d(x) = x3+1
Generator polynomial: g(x) = x3+x+1
Dividend: b(x) = d(x)-x3 = x5+x3
Codeword polynomial: c(x) = d(x)-x3 + r(x)

CRC polynomial: r(x) ="

Example: CRC derivation

Dataword| x3 + 1

Divisor x3 + X

x3+x+1>x6+ x3 -
x6 + x* + x3

x4
x¥ + x2 + x

/

Codeword| x6 + x3 X2 + X

Dataword Remainder

Dividend:
augmented
dataword

x2 + x | Remainder

CRC: Some theory

The CRC polynomial is the reminder of the division
d(z)z"*k

()
Thus d(xz)z"™ " = g(x)z

or, equivalently ¢(x)

(z) + ()
d(z)z" " +r(z) = g(2)2(z)

A polynomial c(x) with deg<n is a codeword if
and only if g(x) divides c(x).

20

Error detection capabilities

Single errors: e(x)=x' is not divisable by g(x)
Double errors: e(x)=x+x'=x '(x/"'+1)
Use primitive polynomial p(x) with deg=L. Then if
n-1<2'-1 it is not divisable and all double errors will
be detected

If x+1/g(x) all odd error patterns will be detected

In practice, set g(x)=(x+1)-p(x)

Some standard CRC polynomials

Name

Polynomial

Used in

CRC-8

8

=
X+ x+x+1

100000111

ATM

header

CRC-10

IO 9 4

0+ + x40+
11000110101

ATM
AAL

CRC-16

l 12

x4
10001000000100001

HDLC

CRC-32

26 23 22 16 12 ll 10 8

29
X+ X+ x4+ +x +X +X +X

100000100110000010001110110110111

7

+X+X

4

2
+Xx"+x+1

LANs

Checksum

The checksum is used in the Internet by several
protocols although not at the data link layer.

The main principle is to divide the data into
segments of n bits. Then add the segments and
use the sum as redundant bits.

Checksum process

Sender Receiver
Message

Message

m bits | m bits e o ¢ |mbits m bits | m bits e o ¢ |mbits

All 0’s 5

Discard

m bits

A A

—>| (enerator F

Checker

mbits [mbits| e e e |[mbits | m bits mbits [mbits| e e e |m bits [m bits

Message plus checksum

Message plus checksum

Example: Checksum

Receiver site

Sender site

0111 7
1011 11
1100 12
0000O 0
0110 6
0000 0
Sum —>» 36

Wrapped sum —>» 6
Checksum —>» 9

7,11,12,0,6,9

100100 36
10
0110 6
1001 9

Details of wrapping
and complementing

Packet

0111 7
1011 11
1100 12
0000 0
0110 6
1001 9
Sum —>» 45

Wrapped sum —>» 15
Checksum —>» 0

101101 45
10
1111 15
0 00O 0

Details of wrapping
and complementing

Forward Error Correction (FEC)

Two simple examples
Repetition code
Concatenated parity check

Repetition code

Transmitter
For each bit, transmit three copies

Receiver
Decode acording to majority decision
If one error uccured this will be corrected

Repetition code, Example

Transmitter
d=0= c= 000

Channel

One error: e = 010 = y = 010

Receiver A
y=010=¢=000=d=0

Vertical and horisontal parity

Encoding

Let d be a binary matrix.

Add parity bits for each row and column
Decoding

If one error, it can be found from the parity bits

Two or three errors can be detected (but not
always corrected)

V+H parity, Example

Encoding

1
0

1
0

1
0

1
0

0O 0 0 1
1

= C

0
1

1
0
0 0 0 1

Channel

1

One error

0 0 0 1]0

1

0 0 O

V+H parity, Example

Decoding
Two parity bits wrong. Points at one position.

11 0 1]1 11 0 11 1
000 1/l0 . o001 1l0
y:00011;””:00011;‘d:8
1 1 1 1|0 1 1 1 1|0

o O =

O = O

Error and flow control

The basic principle in error and flow control is that
the receiver acknowledges all correctly received

packets.

—————————%

Data

Stop-and-wait ARQ

The receiver sends an ACK for every data packet
that is correctly received.

The sender transmits the next packet when it has
received an ACK for the previous one.

The sender uses a time-out for each packet. If the

time-out expires (i.e. no ACK has arrived), the
packet is retransmitted.

Packets are identified with a sequence number,
alternating between 0 and 1. ACK is labeled with
the next packet

Stop-and-wait ARQ flow diagram

Sender Receiver

Start

Stop

@ Request [O[0}110/1] W"

Time-out D
restart

Stop ©

Start ‘

Time-out ID
restart o --n-Eleoe T LANC0 (reseny) T L
10: 1,0 0: 1 Arrival
S B ! Discard, duplicate
Stop © Arrival 01100 1:

Stop-and-wait ARQ inefficiency

Too much waiting

Solution
Keep the pipe full
But not too full
Sliding window
Size matters

Window size < 2™

Sliding window at sender

S¢ Send window, S, Sendwindow,
first outstanding frame next frame to send
13114008 RERECR I
Frames already Frames sent, but not Frames that can be sent, Frames that
acknowledged acknowledged (outstanding) but not received from upper layer cannot be sent

A

>
>

Y
4

>l
|

Send window, size S, =2™ - 1

a. Send window before sliding

| 7 [8] 9[10]11]12]13[14][15] 0] 1

b. Send window after sliding

Importance of window size

St S,
® a3
S¢S,

2|3

| b
Time-out .

Sender

Receiver

Correctly
discarded

a. Window size < 2™

Sender

S¢ S,
1]2[3]0]
Sf Sn

230

4/ A

N

Q
%
(S

€
~€

Receiver

1[2[3

Erroneously
accepted

b. Window size = 2™

Go-back-N, example (lost ACK)

Sender Receiver
Start Ry
timer S Sn | !
@ nital [o[1]2[3]4]s[6[7]0[1]2] | 1[2[3[4]5]6]7] Initial
St | |
|
Request
Arrival |
|
| | Rn
|
RequeSt m Emn WI >|0 I 1 i3 |4 I 5 |6 I 7 | Arrival
Request Rn
0|1 |2i4|5|6|7| Arrival
Request R,
0|1 |2|3-5|6|7| Arrival
Arrival |
|
|
St. Arrival |
- Y Y
i
mer Time Time

Go-back-N, example (lost data)

Sender Receiver

Star .
n
I

timer S¢ ar Sn
T2 [3[a[5[6]7] initial

I
@ mital [o[1]2[3]4]5[6[7]0[1]2] |
I
S¢ |—Sn :
Request [@]1]2]3]4[5]6]7]0]1]2

SE1 Sn
[o[1]2]3]4[5[6]7]0][1]2

I

I

I

St I—Sn : :

Request Ei2|3|4|5|6|7|0|1|2 m |
s 2R

I I

I

Request

Arrival

Request

Arrival
Time-out
Time-out val
Restart Arriva
Arrival
Arrival
Arrival [o]1 {2184 5167 1 12

Sf [‘Sn
Arrival |O|1|2i4|5|6|7|0|1|2

SE[Sn

® Arival [0]1]2]3]4]5]6]7]0]1]2
Stop Y
timer m

Selective repeat ARQ

Why?

Too many retransmissions
What if?

Just send lost frames
Higher efficiency

Higher receiver complexity

Windows aga

Send window, first S,
outstanding frame

Frames already | Frames sent, but
acknowledged | not acknowledged

N

S, Send window,
next frame to send

8 + 9

Frames that can
be sent

—-_—— = - - -—— - -— - -

'1ol11-12v13n14'15aoijj

mmmlecelcaccal ccclcccl el cdacacd e

—-f=—=—=—f=-==p=-==-r - -

Frames that
cannot be sent

>l >l
-1 > P

S

size —

_ 2m-1

R

n

Frames already
received

Receive window,
next frame expected

Frames that can be received
and stored for later delivery.
Colored boxes, already received

2314005

-—r---r---r-

0 i1

i
RN R Y

Frames that
cannot be received

R.. =2m—1

size

Selective repeat ARQ window size

Sender Receiver Sender Receiver

S¢
M [1[2[3] (rame , | R M 1[2[3]0] rame | R
St S 23 S S,, > 12[3]0[1
iZ 3] (Lrame Rn 2[3[0] ~Lram | R
S¢ |—Sn S¢ |—5n > Oflf2(3(0f1
iz 3| ame Rn is 0] FErame Rn
\0123 S rS"} o[1]2]3[o[1
o h3 Ol & R
Time-out

Y Y [Correctly

.%‘

discarded O(1({2(3]0]1

Y Y [Erroneously
accepted

[]
Time-out

2m-1 2m-1

a. Window size = b. Window size >

Selective repeat ARQ flow diagram

Sender

St Sy,
Initial [0]1[2]3]4[5]|6]7]0] i
|

Receiver

=7,
o[2J4[567] it

|
|
|
|
I R
|

n

0 S S .
Request Frame 0

Arrival

‘ Request

‘ Request
. Request

‘ Arrival

® © o Arrival

o[1]2]3]4]5]6]7]

Arrival

Sf Sn I

0[1]2]3]4]5]6]7]0]

S S I

f n |
ofl2{3]4]5[6[7]0

Sf Sn |

Frame 1 ﬁ
|
Lost

Frame O
delivered

o f2]3[4]5(6[7]0

Frame 2

Sn |

Frame3 _

4|5]6[7[0>~
|

Frame 1 (resend)

ﬂl 3]4]5]6]7] Arrival
m. 4[5]6]7] Arrival

n
0[1]2]34[5|6]7]0]

; EEIEEEEIAmml

Frames 1,2, 3
delivered

Piggyback

Often the traffic goes both ways.

* Use the transmitted packages to send ACK

« LetS, and R, be transmitted and received sequense

numbers. Use frame as below.

Flag S, R

Data

CRC

Flag

Point-to-point protocol (PPP)

Direct connection between two nodes

* Internet access

 Home user to ISP

Telephone line
Cable TV

PPP | Q ii

Applications E

essi

State transitions in PPP

We need more protocols

Failed
Carrier LCP
detected Establish -
Carrier Options agreed
dropped by both sides AP
Failed /A If authentication

uthenticate

Terminate

not needed

Authentication
successful

NCP

Open / Network
Network layer

configuration

Lo e o o o o o o e e e e e e o

PPP frame format

Support for several (sub)protocols
Address & control not used
Maximum payload 1500 bytes

1111111 1T—— — 11000000
Flag | Address | Control |{ Protocol Payload FCS Flag I
1 byte 1 byte 1 byte 1 orzytes Variable 2 or4 bytes 1 byte
= OxC021// LCP: Link Control Protocol

AP: Authentication Protocol

AP:0xC023 and 0xC223 NCP: Network Control Protocol
NCP: 0x8021 and

Data: Ox0021 and

Link control protocol (LCP)

Code Packet Type Description
. 0x01 Configure-request Contains the list of proposed options and their values
E St a b I I S h 0x02 Configure-ack Accepts all options proposed
0x03 Configure-nak Announces that some options are not acceptable
C ﬁ 0x04 Configure-reject Announces that some options are not recognized
O n g u re 0x05 Terminate-request Request to shut down the line
. 0x06 Terminate-ack Accept the shutdown request
Te r m I n a t e 0x07 Code-reject Announces an unknown code
0x08 Protocol-reject Announces an unknown protocol
0x09 Echo-request A type of hello message to check if the other end is alive
0x0A Echo-reply The response to the echo-request message
0x0B Discard-request A request to discard the packet
‘ 1 2 Variable
LCP packet |Code| ID | Length Information

Payload
(and padding)

Flag | Address | Control

Authentication protocols (AP)

Password authentication (PAP)

System
=
||
-

Authenticate-request
>
< Authenticate-ack or authenticate-nak
R e ettt et
[1 1 2 1 Variable 1 Variable
|
: Authenticate-request |Code: 1| ID | Length User name User name Password Password
| length length
|
|
: Authenticate-ack |Code: 2| ID | Length Message User name
| length
|
|
[Authenticate-nak [Code: 3| ID | Length Message User name
! length PAP packets

Payload
(and padding)

Authentication protocols (AP)
Challenge handshake authentication (CHAP)

System
=
User
| .|
=
Challenge
Response
P Success or failure
___ |
1 1 2 1 Variable Variable
Challenge [Code: 1| ID | Length Challenge [EhiclICEE Name
length value
Response [Code:2| ID | Length Response [[IECieiRS Name
length value

Success |Code:3| ID | Length | Message

Failure |Code: 4| ID | Length | Message

CHAP packets

Payload

Flag Address | Control ‘ e

FCS Flag

Network control protocols (NCP)

Preparations for the network layer

 |PCP for Internet

Code IPCP Packet
0x01 Configure-request
0x02 Configure-ack
0x03 Configure-nak
0x04 Configure-reject
0x05 Terminate-request
0x06 Terminate-ack
0x07 Code-reject

Variable

IPCP
packet

Code ID | Length

IPCP information

Flag Address | Control 0x8021

Payload
(and padding)

FCS

Flag

IP datagram encapsulation in PPP

IP packet Header User data

- -

Payload
Flag Address | Control @ il Bl FCS Flag

PPP session example

Authenticate

I

i Configure-request

— Flag co21 [{o1]| | | options || |Flag|mmp

i LCP

i Configure-ack
i «-Flag C021 Flag
! LCP

I

i Authenticate-request

i Flag| C023 | 01 | I Name Passwordl Flag#
i PAP

i Authenticate-ack

i <= co23 | [o1| | | | Name |
i PAP

i Configure-request

; Flag| 8021 | 01 | | | Options | Flag -»

i IPCP

i Configure-ack
i m={Flag| 8021 Flag
i IPCP

|

v

Establish

Network

PPP session example (cont’d

Data transfer

Termination

T

f

Flag| co21 [[o5| | | tin Flag >

§m=-Flag| CO021 m..
LCF

Flag

R —

