EITF25 Internet-Techniques and Applications Stefan Höst

L2 Physical layer (part 1)

OSI model Open Systems Interconnection

Developed by ISO, 1970~

TCP/IP model

Developed by DARPA, 1970~

Physical layer

- Analog vs digital signals
 - Sampling, quantisation
- Modulation
 - Represent digital data in a continuous world
- Transmission media
 - Cables and such
- Disturbances
 - Noise and distortion

Data vs Signal

- Data: Static representation of information
 - For storage (often digital)
- Signal: Dynamic representation of information
 - For transmission (often analog)

Analog vs digital

Analog

- Continuous time and amplitude signal
- Electrical/optical domain

Digital

- Discrete time and amplitude
- Binary representation

Digitalization of analog signals

Performed in three steps:

- Sampling
 Discretization in time
- QuantizationDiscretization in amplitude
- Encoding Binary representation of amplitude levels

Sampling

 The process of discretizing time of a continuous signal.

$$s[n] = s(nT_s)$$

- Sampling time: T_s
- Sampling frequnecy:

$$F_s = 1/T_s$$

 Loose iformation about time

Aliasing

$$y(t)=cos(14\pi t)$$

 $F_s=10 Hz$

Reconstruction to lowest possible frequency

$$y(t) = cos(6\pi t)$$

Shannon-Nyquist Sampling Theorem

If s(t) is a band limited signal with highest frequency component F_{max} , then s(t) is uniquely determined by the samples s[n] = s(nT) if and only if

$$F_s = \frac{1}{T} \ge 2F_{\text{max}}$$

The signal can be reconstructed with

$$s(t) = \sum_{n = -\infty}^{\infty} s[n] \sin c \left(\frac{t - nT_s}{T_s} \right)$$

 $F_s/2$ is the Nyquist frequency and $2F_{max}$ the Nyquist rate

Reconstruction Example

 $y(t)=\sin(2/7\pi t)$, $F_s=1Hz$

Sampling theorem proof Two important transforms

Sampling theorem proof Mathematical description of sampling

Sampling theorem proof Reconstruction

Sampling theorem Aliasing

Let F_s<2F_{max}

Example

$$y(t) = \cos(2\pi 7t) \to Y(f) = \frac{1}{2} \left(\delta(f+7) + \delta(f-7) \right)$$

Sampling with F_s =10 Hz

Reconstruct in
$$[-F_s/2, F_s/2]$$
: $\hat{Y}(f) = \frac{1}{2} (\delta(f+3) + \delta(f-3)) \rightarrow \hat{y}(t) = \cos(2\pi 3t)$

Quantization

Linear Quantization for k bits

- M=2^k equidistant levels
- Represent sample with k bits

Encoding

Representation of quantized samples in bits

x=01110010010110110111111111111...

Quantisation distortion

Distortion:

$$d(x, x_Q) = (x - x_Q)^2$$

Average distortion for uniform input:

$$E\left[\left(X - X_{Q}\right)^{2}\right] = \int_{-\Delta/2}^{\Delta/2} x^{2} \frac{1}{\Delta} dx = \frac{\Delta^{2}}{12}$$

Quantization

Delta modulation

- Represent
 change in
 amplitude with
 1 bit
 - 1: +1
 - 0: -1
- Must be faster sampling

Examples

Telephony

 $F_{\text{max}} = 4 \text{ kHz}$

F_s= 8 kHz (samples per sec)

8 bit/sample => 64 kb/s

CD

 $F_{\text{max}} = 20 \text{ kHz}$

 F_s = 44.1 kHz (samples per sec)

16 bit/sample => 705.6 kb/s

2 channels (stereo)

=> 1.4 Mb/s

From bits to signals

Principles of digital communications

On-off keying

• Send one bit during T_b seconds and use two signal levels, "on" and "off", for 1 and 0.

Non-return to zero (NRZ)

• Send one bit during T_b seconds and use two signal levels, +A and -A, for 0 and 1.

Mathematical description

With g(t)=A, 0<t<T, the signals can be described as

$$s(t) = \sum_{n} a_{n} g(t - nT)$$

On-off

$$a_n = x_n$$

NRZ

$$a_n = (-1)^{x_n}$$

Two signal alternatives

• $s_0(t)=0$ and $s_1(t)=g(t)$

• $s_0(t)=g(t)$ and $s_1(t)=-g(t)$

Manchester coding

 To get a zero passing in each signal time, split the pulse shape g(t) in two parts and use +/- as amplitude.

Multi level modulation

• To transmit k bits in one signal alternative of duration T_s , use $M=2^k$ levels.

Ex. Two bits per signal

x=10 01 00 10 10 11 11 10 00

