

Internet – users' view

Internet – engineers' view

How do we get there?

Physical

2013-11-0

Internet Protocol Suite = TCP/IP model

(host-to-network)

A bottom-up approach

- Principles of digital communications

 From electrical signals to bits to packets
- Using the physical infrastructure
 - Network access
- Finding your way

 Addressing, routing
- Making use of it all
 - Applications

Internet: Physical Layer

- Data and Signals [Forouzan ed.5 ch.3.1-4]
 - Analog, digital
- Conversion to Digital [Forouzan ed.5 ch.4.1-2]
 - Coding
- Conversion to Analog [Forouzan ed.5 ch.5.1]
 - Modulation
- Multiplexing [Forouzan ed.5 ch.6.1]

*[Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6]

Data vs Signal

- Data: Static representation of information
 - For storage
- Signal: Dynamic representation of information
 - For transmission

Analog vs Digital

- Analog \rightarrow continuous
- Digital \rightarrow discrete

Digitalization of analog signals

- Performed in three steps:
- 1. Sampling
 - Discretization in time
- 2. Quantization
 - Discretization in amplitude
- 3. Encoding
 - Binary representation of amplitude levels

Sampling

 The process of discretizing the time of a continuous function.

Nyquist Sampling Theorem

• If s(t) is a band limited signal with highest frequency component F_{max} , then s(t) is uniquely determined by the samples $s_n = s(nT)$ if and only if

$$F_s = \frac{1}{T} \ge 2F_{\max}$$

• The signal can be reconstructed with

$$\mathbf{s}(t) = \sum_{n} \mathbf{s}_{n} \sin \mathbf{c} \left(\frac{t - nT}{T} \right)$$

• F_{max} is the Nyquist frequency and F_s the Nyquist rate

Data Rate vs Signal Rate

Data Rate

- Number of bits transmitted per second
- Unit b/s or bps
- Often denoted R_b

Signal Rate

- Number of signal alternatives transmitted per second
- Unit Hz (sometimes baud)
- Often denoted T_s

 $-R_{h}=kT_{s}$

• If there are k bits/signal

Example: Bit rate for telephony links

- Analog signal in frequencies from 0 to 4kHz
- Nyquist theorem \rightarrow sampling frequency
 - 2 x 4000 Hz = 8000 Hz (samples per second)
- 8-bit encoding
 - 8000 Hz x 8 bits = 64000 bits/s

How sampling rate affects the result

Quantization

Quantization

Delta modulation

Encoding

• Representation of quantized samples in bits

From bits to digital signals

- Transmission medium
 - Twisted pair
 - Coaxiel
 - Optical fibre
 - Air

Digital signal transmission

• Signals coded by changes in voltage amplitude

Non-Return to Zero (NRZ-L)

- 0 = high voltage amplitude
- 1 = low voltage amplitude

• Synchronisation problem

Manchester Coding

• Combines NRZ with a clock pulse

Differential Manchester

- 0 = Inversion at the beginning of the bit
- 1 = No inversion at the beginning of the bit

See you in 15' :)

- After the break
 - Analog transmission
 - Transmission impairment
 - Multiplexing

Analog transmission

- Used in wireless communications
- Uses a technique called "modulation"
- Digital data represented by sinus waves

Types of modulation schemes

Amplitude Shift Keying (ASK)

- Varies amplitude of carrier signal
- A.k.a. Pulse Amplitude Modulation (PAM)

Frequency Shift Keying (FSK)

• Varies frequency of carrier signal

Phase Shift Keying (PSK)

• Varies phase of carrier signal

Transmission impairment

- When a signal travels on a link, it deteriorates due to transmission impairment.
 - Attenuation
 - Distortion
 - Noise

Signal-to-noise ratio = (SNR) Average noise power

Attenuation

• Loss of energy

Distortion

• Change in signal shape

Noise

Corruption due to e.g. thermal noise or crosstalk

Multiplexing

- Why?
 - Two computers transmitting data on a link cannot do this simultaneously on the same frequencies with the same coding scheme.

Data flow concepts

Multiplexing of links

- Physical links need to be shared.
- They are divided into several channels.

Multiplexing techniques

- 1. Space-Division multiplexing (SDM)
- 2. Frequency-Division Multiplexing (FDM)
- 3. Wavelength-Division Multiplexing (WDM)
- 4. Time-Division Multiplexing (TDM)
- 5. Code-Division Multiple Access (CDMA)

Space-Division Multiplexing (SDM)

- Used in fibre-optic cables
- Each channel uses one optical fibre.

Frequency-Division Multiplexing (FDM)

- Analog multiplexing technique
- Physical link divided into frequency bands
- Each channel uses a unique carrier frequency.

FDM process

Wavelength-Division Multiplexing (WDM)

- Analog multiplexing technique
- Combines optical signals

Time-Division Multiplexing (TDM)

• Each channel occupies a time slot on the link.

Synchronous TDM

Synchronous TDM

• If a channel has nothing to send, its time slots will be empty!

• Solution: Dynamic slot allocation

Statistical Time-Division Multiplexing

- Dynamic slot allocation
- No time slots reserved for channels
- Destination address added to each slot
- Better performance when not all channels transmit data all the time

TDM comparison

a. Synchronous TDM

Summary: Physical Layer

- Data, signal \rightarrow analog, digital
- Digitalisation

- Sampling, quantisation, encoding

- Digital transmission \rightarrow coding
- Analog transmission \rightarrow modulation

- Attenuation, distortion, noise

- Multiplexing
 - Space, frequency, wavelength, time