LUND

UNIVERSITY

EITF20: Computer Architecture

Part6.1.1: Course Summary

Liang Liu
liang.liu@eit.lth.se

1 Lund University / EITF20/ Liang Liu 2015

The art of designing computers Is
based on engineering principles
and
quantitative performance evaluation

2 Lund University / EITF20/ Liang Liu 2015

Computer Architecture

Computer architecture Is a set of disciplines that
describe the functionality, organization and
Implementation of computer systems.

CISA: Instruction-set architecture
COComputer orginization: micro architecture
COSpecific implementation

3 Lund University / EITF20/ Liang Liu 2015

4

Computer abstraction levels

>

% [Compiler Application
;5 Assembler Operating System
" Linker | Loader | Scheduler | Device Drivers

Processor

/0O System

Datapath & Control Design

Digital Logic Design

Hardware

Circuit Design

Physical (IC Layout) Design

Lund University / EITF20/ Liang Liu 2015

What computer architecture?

CODesign and analysis
* ISA
« Orgnization (microarchitecture)
* Implementation

C0To meet requirements of
 Functionality (application, standards...)
* Price
- Performance
* Power
* Reliability
* Dependability
« Compatability

5 Lund University / EITF20/ Liang Liu 2015

Outline

[0 Performance

O ISA

[l Pipeline

0 Memory Hierarchy
0 1/O, Storage System

6 Lund University / EITF20/ Liang Liu 2015

v

What I1s Performance?

Plane DC to Paris Speed
Boeing 747 6.5h 980 km/h
Concorde 3h 2160 km/h

O Time to complete a task (T,,.)

« Execution time, response time, latency
] Task per day, hour...

« Total amount of tasks for given time

* Thoughput, bandwidth

[0 Speed of Concorde vs Boeing 747
O Throughput of Boeing 747 vs Concorde

Lund University / EITF20/ Liang Liu 2015

Performance

1

Performance(X) = To(X)
exe

“X is n times faster than Y” means:

Texe(Y) Performance(X)
Texe(X) Performance(Y)

=N

8 Lund University / EITF20/ Liang Liu 2015

Performance

Application Answers/month
Programming Response time (seconds)
language Operations/second
Compiler

MIPS/MFLOPS
Megabytes/second

Instruction set
Data-path control
Functional units
Transistors, wires, pins

rrr rn

Cycles per second (clock rate)

MIPS = millions of instructions per second
MFLOPS = millions of FP operations per second

Lund University / EITF20/ Liang Liu 2015

Aspect of CPU performance

CPUtime = Execution time =
seconds/program =

(executed)instr./program = cycles/instr. « seconds/cycle

IC CPI Te
IC CPlI T,
Program X
Compiler X (X
Instr. Set X X
Organization X X
Technology X

10 Lund University / EITF20/ Liang Liu 2015

Quantitative Principles

CThis is intro to design and analysis

- Take advantage of parallelism
QO ILP, DLP, TLP, ...

* Principle of locality
1 90% of execution time in only 10% of the code

* Focus on the common case

1 In makeing a design trade-off, favor the frquent case ove the
infrequent case

« Amdahl’'s Law

 The performance improvement gained from uisng faster mode is
limited by the fraction of the time the faster mode can be used

« The Processor Performance Equation

11 Lund University / EITF20/ Liang Liu 2015

Amdahl’s Law

Enhancement E accelerates a fraction F of a program by a factor S

F — F/S

Toxe(without E) Texe(with E)

Speedup due to enhancement E:

_ Texe(without E) _ Performance(with E)
S’O eedup(E) — Texe(withE) — Performance(without E)

Texe(With E) = Texe(without E) x [(1 — F) + F/S]

__ Texe(without E) __ 1
Speedup(E) = “5: i ey’ = (FrF7S

12 Lund University / EITF20/ Liang Liu 2015

Outline

O
O ISA

O
O
O

13 Lund University / EITF20/ Liang Liu 2015

Interface Design

C0A good interface
 Lasts through many implementations (portability, compatibility)
- Can be used in many different ways (generality)
 Provides sufficient functionality to higher levels
« Permits an efficient implementation at lower levels

High level language code : C, C++, Java, Fortran,
i compiler
Assembly language code: architecture specific statements
; assembler
Machine language code: architecture specific bit patterns

software

instruction set

hardware

14 Lund University / EITF20/ Liang Liu 2015

ISA Classification

COIWhat’s needed in an instruction set?

Addressing
Operands
Operations
Control Flow

[l Classification of instruction sets

Register model

The number of operands for instructions
Addressing modes

The operations provided in the instruction set
Type and size of operands

Control flow instructions

Encoding

15 Lund University / EITF20/ Liang Liu 2015

16

ISA Design Issues

COWhere are operands stored?
* registers, memory, stack, accumulator
COHow many explicit operands are there?
- 0,1, 2, or3
COHow is the operand location specified?
* register, immediate, indirect, . . .
COWhat type & size of operands are supported?
* byte, int, float, double, string, vector. . .
COWhat operations are supported?
* add, sub, mul, move, compare . ..

COHow is the operation flow controlled?
* branches, jumps, procedure calls . ..

COWhat is the encoding format
- fixed, variable, hybrid...

Lund University / EITF20/ Liang Liu 2015

ISA Classes: Where are operands stored

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/load-store

Processor

TOS >

v/ v/

17 Lund University / EITF20/ Liang Liu 2015

Memory Addressing Mode

Addressing Mode Example

1. Register direct Add R4, R3

2. Immediate Add R4, #3

3. Displacement Add R4, 100(R1)
4. Register indirect Add R4, (R1)

5. Indexed Add R4, (R1 + R2)
6. Direct Add R4, (1000)

7. Memory Indirect Add R4, @(R3)

8. Auto-increment Add R4, (R2)+

9. Auto-decrement Add R4, (R2)-

10. Scaled Add R4, 100(R2)[R3]

Action

R4 <-R4 + R3

R4 <-R4 + 3
R4<-R4 +M
R4 <-R4 + M
R4<-R4+M
R4<-R4+M
R4<-R4+M
R4<-R4+M
R2<-R2+d

100 + R1]
R1]

R1 + R2]
1000]
M[R3]]

R2]

R4 <- R4 + M[R2]

R2<-R2-d
R4 <-R4 +

18 Lund University / EITF20/ Liang Liu 2015

Instruction format

CIVariable instruction format

- Compact code but the instruction decoding is more complex
and thus slower

« Examples: VAX, Intel 80x86 (1-17 byte)

Operation | Address Address | ... | Address Address
operands | specifier 1 | field 1 specifier x | field x

ClFixed instruction format
- Easy and fast to decode but gives large code size
- Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC

Operation | Address | Address | Address
field 1 field 2 field 3

19 Lund University / EITF20/ Liang Liu 2015

Example: RISC-CICS

CORISC (Reduced Instruction Set Computing)

Simple instructions

MIPS, ARM, ...

Easier to design, build

Less power

Larger code size (IC), but in total (byte)?
Easier for compiler, but for optimization?

CCISC (Complex Instruction Set Computing)
« Complex instructions
« VAX, Intel 80x86 (now RISC-like internally), ...

http://cs.stanford.edu/people/eroberts/courses/soco/proj
ects/risc/risccisc/

20 Lund University / EITF20/ Liang Liu 2015

Outline

O
O
[l Pipeline
O
O

21 Lund University / EITF20/ Liang Liu 2015

salipune

22

Pipeline Facts

I [
»

50 50 50 50 20

CMultiple tasks operating
simultaneously

CIPipelining doesn’t help latency
of single task, it helps
throughput of entire workload

CIPipeline rate limited by
slowest pipeline stage

CUnbalanced lengths of pipe
stages reduces speedup

CIPotential speedup «« Number
of pipe stages

Lund University / EITF20/ Liang Liu 2015

One core —the MIPS data-path

Instruction decode’ 5 vy .
: nstry i address .y
Instruction fetch 5 register fetch ; calculation e
i M
: u
X
NPC |- -
: | Zero? e Cond}:
4 | ” taken :
L ofW)
z EI | A B
Instruction 5 -\ :
oy o {Mww ; x >ALU ALU |
: CM output |
i B - u W -
] 1 x
| I
16 (sign- | 32 :
©|extend -

Write

© 2007 Elsavier, Inc. All rights reserved.

23 Lund University / EITF20/ Liang Liu 2015

Dependencies

] Data dependent: if
Instruction i produces a result used by instr. j, or

Instruction j is data dependent on instruction k and instr. k is data
dependent on instr. i

LD FO0,0(R1)
Example: ADDD F4,F0,F2
SD 0(R1),F4

[0 Name dependent: two instructions use same name
(register or memory address) but do not exchange data
Anti-dependence (WAR if hazard in HW)

ADDD F2,FO,F2 ; Must execute before LD
LD FO,0(R1)

Output dependence (WAW if hazard in HW)

ADDD FO,F2,F2 ; Must execute before LD
LD FO,0(R1)

24 Lund University / EITF20/ Liang Liu 2015

Control dependencies

] Determines order between an instruction and a branch
instruction

Example:
if Test1 then { S1 }

if Test2 then { S2 }
S1 is control dependent on Test1
S2 is control dependent on Test2; but not on Test1

25 Lund University / EITF20/ Liang Liu 2015

Summary pipeline - method

Dependency Hazard Method
Data RAW Forwarding, Scheduling,
Name WAR, WAW | Register Renaming
Control Control Branch Prediction,
Speculation, Delayed branch
Precise exceptions in-order commit
ILP Scheduling,
Loop unrolling

26 Lund University / EITF20/ Liang Liu 2015

Solution for simple MIPS

D)

+

O

lllegal
PC address Opcode

=
32

Overflow Data address

Inst.
Mem I Decode
J

Exception I Exceptions E o
“I_‘ - 3
- (1]
. Q
[W
Select / - &
Handler Kill F Kill D Kill E AsynCh rono : Kill
pPC Stage Stage Stage us =-Writeback
Interrupts -
|
LD (faults in MEM) _F D X M W
DADD (faults in IF) F D X M

27 Lund University / EITF20/ Liang Liu 2015

Deeper pipeline

] Implications of deeper pipeline
load latency: 2 cycles

branch latency: 3 cycles (incl. one delay slot) = High demands on
the compiler

Bypassing (forwarding) from more stages
More instructions “in flight” in pipeline
Faster clock, larger latencies, more stalls

] Performance equation: CPIl * Tc must be lower for the
longer pipeline to make it worthwhile

IF IS R EX DF DS TC w
F B
Instruction memory [l Reg [;:l’] Data memory Re

(:

28 Lund University / EITF20/ Liang Liu 2015

29

Pipeline

IF . D

IF . ID

EXE MEM WB
FU1
FU2 MEM WB
FU3

Lund University / EITF20/ Liang Liu 2015

Pipeline hazard

0 RAW hazards:
* Normal bypassing from MEM and WB stages

- Stall in ID stage if any of the source operands is destination operand in
any of the FP functional units

O WAR hazards?

« There are no WAR-hazards since the operands are read (in ID) before
the EX-stages in the pipeline

0 WAW hazard
DIVD FO,F2,F3 FP divide 24 cycles

SUB.D FO,F8,F10 FP subtract 3 cycles

« SUB finishes before DIV which will overwrite the result from SUB!
- are eliminated by stalling SUB until DIV reaches MEM stage
* When WAW hazard is a problem?

30 Lund University / EITF20/ Liang Liu 2015

Scheduling

loop: LD FO, O(R1) ; FO = array element
ADDD F4, FO, F2 - Add scalar constant
SD F4, 0(R1) » Save result
DADDUI R1, R1, #8 ; decrement array ptr.
BNE R1,R2, loop ;reiterate if R1 1= R2
Loop unrolling Scheduling
1 loop: LD FO, O(R1) Loop: L.D F0,0(R1)
2 ADDD F4,F0, F2 L.D F6,-8(R1)
3 SD F4, O(R1) L.D F10,-16(R1)
4 LD F6, -8(R1) L.D F14,-24(R1)
5 ADDD F8, F6, F2 ADD.D F4,FO0,F2
6 SD F8, -8(R1) ADD.D F8,F6,F2
7 LD F10, -16(R1) ADD.D F12,F10,F2
8 ADDD F12, F10, F2 ADD.D F16,F14,F2
9 SD F12, -16(R1) S.D F4,0(R1)
10 LD F14, -24(R1) S.D F8,-8(R1)
11 ADDD F1 6, F14, F2 DADDUI Rl,Rl,#—32
1% SEDDUI 5116’5?4?;% 20 F12,16(R1)
RS S.D F16,8(R1)
14 BNE R1, R2, loop BNE R1,R2, Loop

31 Lund University / EITF20/ Liang Liu 2015

Scoreboard pipeline

] Issue: decode and check for structural & WAW hazards
[J Read operands: wait until no data hazards, then read operands
] All data hazards are handled by the scoreboard

Read operands

32 Lund University / EITF20/ Liang Liu 2015

33

Scoreboard functionality

] Issue: An instruction is issued if:
The needed functional unit is free (there is no structural hazard)

No functional unit has a destination operand equal to the destination of
the instruction (resolves WAW hazards)

[J Read: Wait until no data hazards, then read operands
Performed in parallel for all functional units
Resolves RAW hazards dynamically

[J EX: Normal execution
Notify the scoreboard when ready

] Write: The instruction can update destination if:

All earlier instructions have read their operands (resolves WAR
hazards)

Lund University / EITF20/ Liang Liu 2015

34

Scoreboard example

Instruction status Read Exec. Write
Instruction j k Issue ops compl. result
LD Fé 34+ R2
LD F2 45+ R3

MULTD Fo F2 F4
SUBD Fs8 F6 F2
DIVD F10 FoO F6

ADDD Fé6 F8 F2

Functional unit status dest src1 src2 FUsrc1FUsrc2 Fj? Fk?
Time Name Busy Op Fi Fj Fk Qj Qk Rjf Rk

Integer | No

Muit1 | No

Mult2 | No

Add| No

Divide | No

Register result status

Fo F2 F4 Fé F8 Fio F30

FU

Clock: 0

Lund University / EITF20/ Liang Liu 2015

Tomasulo orgnizations

From instruction unit

Instruction FP registers ‘
queue
Load-store
operations
4)) Operand
YT Floating-point buses
Store buffers T —" operations
¥ ¥ i Load buffers
Y
Operation bus
N 1
2 Reservation 1
1 stations
FP adders FP multipliers
Common data bus (CDB)

35 Lund University / EITF20/ Liang Liu 2015

36

Reservation stations

] Op:Operation to perform (e.g., + or =)
] Vj, Vk: Value (instead of reg specifier) of Source operands
0 Qj, Qk: Reservation stations (instead of FU) producing source
registers (value to be written)
Note: Qj,Qk=0 => ready
V and Q filed are mutual exclusive

[J Busy: Indicates reservation station or FU is busy

[J Register result status—Indicates which RS will write each
register
Blank when no pending instructions that will write that register

Eunctional unit status src1 src2 Rs for RS for k
Time Name Busy Op Vj Vk Qj Qk
Add1 | No
Add2| No
Add3 | No
Mult1 | No
Mult2 | No

Lund University / EITF20/ Liang Liu 2015

Three stages of Tomasulo algorithm

[J Issue — get instruction from instruction Queue
If matching reservation station free (no structural hazard)

Instruction is issued together with its operands values or RS point
(register rename, handle WAR, WAW)

[J Execution — operate on operands (EX)

When both operands are ready, then execute (handle RAW)

If not ready, watch Common Data Bus (CDB) for operands (snooping)
] Write result — finish execution (WB)

Write on CDB to all awaiting RS, regs (forwarding)

Mark reservation station available

Data Bus
. Normal Bus: data + destination
 Common Data Bus: data + source (snooping)

37 Lund University / EITF20/ Liang Liu 2015

Tomasulo extended to support speculation

Reorder buffer

From instruction unit

Y
z Reg # Y Data
Instruction]
queue
FP registers
Load-store
operations R
\ _ _ Operand -
Address unit Floating-point buses
operations |
Load buffers Y Y

\

Operation bus

Store 3

2
address 2 Reservation y
Store » 1 stations
data y ¥ Address
Memory unit FP adders FP multipliers

Load

data Common data bus (CDB)

38 Lund University / EITF20/ Liang Liu 2015

Summary pipeline - implementation

Problem Simple | Scoreboard | Tomasulo | Tomasulo +
Speculation
Static Sch Dynamic Scheduling
RAW forwarding | wait (Read) CDB CDB
stall stall stall
WAR - wait (Write) | Reg. rename | Reg. rename
WAW : wait (Issue) | Reg. rename | Reg. rename
Exceptions precise ? ? precise, ROB
Issue in-order in-order in-order in-order
Execution in-order | out-of-order | out-of-order | out-of-order
Completion | in-order | out-of-order | out-of-order in-order
Structural - many FU many FU, many FU,
hazard stall CDB, stall CDB, stall
Control Delayed Branch Branch Br. pred,
hazard br., stall prediction prediction

39 Lund University / EITF20/ Liang Liu 2015

Outline

Memory Hierarchy

OOo0o0oao

40 Lund University / EITF20/ Liang Liu 2015

Memory tricks (techniques)

Use a hierarchy
CPU superfast Reqisters instructions
FAST Cache

cache memory (HW)
Memory | CHEAP | Main memory
virtual memory (SW)
BIG Disk

41 Lund University / EITF20/ Liang Liu 2015

Levels of memory hierarchy

Capacity
Access Time Staging Upper Level
Cost/bit Transfer Unit + Faster
500 Bytes Registers
0.25ns 1 programmer/compiler
~$.01 Words | 1-8 bytes
16K-1M Bytes
1pe Y L1, L2, ... Cache
~$10-4
$10 3 cache controller
Blocks 8-128 bytes
\4
64M-2G Bytes Memor
100ns S
~$107 4 0oS
Pages 4-64K bytes
\4
100 G Bytes :
Ems) Disk
_ -7_ -9
$107- 10 _ 3 user/operator ’
Files Mbytes
\4 L
“infinite” S
secs. Tape/Network]
~$10-10

42 Lund University / EITF20/ Liang Liu 2015

Four memory hierarchy questions

[J Q1: Where can a block be placed in the upper level?
(Block placement)

[J Q2: How is a block found if it is in the upper level?
(Block identification)

[J Q3: Which block should be replaced on a miss?
(Block replacement)

] Q4: What happens on a write?
(Write strategy) Upper level

Block

Lower level

43 Lund University / EITF20/ Liang Liu 2015

Block placement

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go

anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

cache
Set Set Set Set
0 1 2 3
Block rame address
Block 1111111111222222222288
nND. 01234567890123456789012345678901
memory

44 Lund University / EITF20/ Liang Liu 2015

45

Block identification

31 30 13121110 210
| tag index
20 10 /‘/ §
byre
oftset
Index Valid Tag Data
0
1
2
3 Data
&
- »
1020
1021
1022
1023 e
20 3%
A direct mapped
‘ cache with a Hit

one word block size

Lund University / EITF20/ Liang Liu 2015

Which block should be replaced on a Cache miss?

] Direct mapped caches don’t need a block replacement
policy
] Primary strategies:
Random (easiest to implement)

LRU — Least Recently Used (best, hard to implement)
FIFO — Oldest (used to approximate LRU)

Associativity

Size)
16 KB -0,08 4
64 KB 00 3

256 KB 5

[is] F0,02 -

Figure C. i m . Sk

replacer = * ast-

size cach 3 £ LRU2- Random2- LRU4- HRandom4- LRUB8- Random 8- i

cache siz ﬁ way way way way way way 100

benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mct, and perl) and five are rom SFELTPZUVU (apply, art,
equake, lucas, and swim).We will use this computer and these benchmarks in most figures in this appendix.

46 Lund University / EITF20/ Liang Liu 2015

a7

Cache write (hit)

] Write through:

The information is written to both
the block in the cache and to the
block in the lower-level memory
Is always combined with write
buffers so that the CPU doesn’t

have to wait for the lower level
memory

] Write back:

The information is written only to
the block in the cache

Copy a modified cache block to
main memory only when replaced

Is the block clean or modified?

(dirty bit, several write to the same
block)

CPU

Cache

Memory

Write Buffer

CPU

-@®
Cache

rite

Memory

CPU

Cache

ref

Lund University / EITF20/ Liang Liu 2015

Cache performance

CPU execution Time =
mem accesses

instruction

IC * (CPloxecution + * MISS rate = miss penalty) = T¢

] Three ways to increase performance:
Reduce miss rate
Reduce miss penalty
Reduce hit time (improves T()

Average memory access time =
hit time + miss rate x miss penalty

48 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW
time width penalty rate complexity

Simple + - 0
Addr. transl. - 1
Way-predict + 1
Trace - 3
Pipelined + 1
Banked + 1
Nonblocking + + 3
Early start + 2
Merging write + 1
Multilevel + 2
Read priority + 1
Prefetch + + 2-3
Victim + + 2
Compiler + 0
Larger block - - 0
Larger cache - + 1
Associativity + 1

49 Lund University / EITF20/ Liang Liu 2015

Virtual memory benifits

[J Using physical memory efficiently
Allowing more than physical memory addressing
Enables programs to begin before loading fully
Programmers used to use overlays and manually
control loading/unloading

[J Using physical memory simply
Virtual memory simplifies memory management
Programmer can think in terms of a large, linear
address space

[J Using physical memory safely

Virtual memory protests process’ address | s Sse s
spaces

Processes cannot interfere with each other,

because they operate in different address space

User processes cannot access priviledged
information

50 Lund University / EITF20/ Liang Liu 2015

Virtual memory concept

Virtual Physical

s address [l Is part of memory hierarchy

0 0

4K B B c - The virtual address space is divided
Ak & oK into pages (blocks in Cache)
12K D 12K]

— 16K A . - The physical address space is
Virtual memory 20K divided into page frames
— 24K B])
28K - Amiss is called a page fault

Pages not in main memory are

’ stored on disk
E—— s

©2007 Elsavier, Inc. All rights reserved.

] The CPU uses virtual addresses

[0 We need an address translation (memory mapping)
mechanism

51 Lund University / EITF20/ Liang Liu 2015

Page placement

] Where can a page be placed in main memory?
Cache access: ~ ns

Memory access: ~ 100 ns
Disk access: ~ 10, 000, 000 ns

—> HIGH miss penalty

[J The high miss penalty makes it
Necessary to minimize miss rate

Possible to use software solutions to implement a fully associative
address mapping

52 Lund University / EITF20/ Liang Liu 2015

Page identification: address mapping

Vistul adress] 4Byte per page table entry
| O'TT* . Page table will have
Physical address 220*4:222:4M Byte
i Page Offset . . .
. | 1 mt:::;aw - Generally stored in the main memory
—| Table ﬁ""\hh!)
H""_'_'_‘_'_'_'_'_'_'_'_] 64 bit virtual address,16 KB
: pages:

_ 264[214%4=252=212TRByte
[J Contains Real Page

Number
[0 Miscellaneous control [J One page table per program
information (100 program?)
valid bit, 1 Solutions
dirty bit,

Multi—level page table

replacement information,
P Inverted page table

access control

53 Lund University / EITF20/ Liang Liu 2015

Page identification (TLB)

[J How do we avoid two (or more) memory references for each
original memory reference?
Cache address translations — Translation Look-aside Buffer (TLB)

TLB hit
virtual address — TLB »= physical address
— TLB miss
TLE write T
|
Table — - page table
walker it
page table
page not
present
page table write A —‘
disl<

54 Lund University / EITF20/ Liang Liu 2015

55

Summary memory hierarchy

Hide CPU - memory performance gap
Memory hierarchy with several levels
Principle of locality

Cache memories:

@ Fast, small - Close to CPU
Hardware
TLB
CPU performance equation
Average memory access
time
@ Optimizations

Virtual memory:
@ Slow, big - Close to disk
@ Software
e TLB
@ Page-table
@ Very high miss penalty —
miss rate must be low
@ Also facilitates: relocation;

memory protection; and
multiprogramming

Same 4 design questions - Different answers

Lund University / EITF20/ Liang Liu 2015

Outline

OOo0o0oao

/O, Storage System

56 Lund University / EITF20/ Liang Liu 2015

/O technologies

] The techniques for 1/0 have evolved (and sometimes
unevolved):

Direct control: CPU controls device by reading/writing data lines
directly

Polled I/0: CPU communicates with hardware via built-in
controller; busy-waits (sampling) for completion of commands

Driven I/O: CPU issues command to device, gets interrupt on
completion

Direct memory access: CPU commands device, which transfers
data directly to/from main memory (DMA controller may be
separate module, or on device).

/O channels: device has specialized processor, interpreting main
CPU only when it is truly necessary. CPU asks device to execute
entire I/O program

57 Lund University / EITF20/ Liang Liu 2015

HDD vs. SSD

‘.’ il u));:-_f-‘l;@.ﬂ'_ : ’l _, (1 l-;
mMssd uara seo

msystems

W Pt

O roce

58 Lund University / EITF20/ Liang Liu 2015

Reliability / Availability — Dependability

] Definitions:
Reliability — Is anything broken?
Availability — Is the system available for the user?
Dependability — Is the system doing what it is supposed to do?
0 Why is this an issue?

Small disks and large disks cost the same / byte

An array of N small disks can achieve higher bandwidth than one
large disk

However, the reliability is 1/N of the reliability of a single disk

59 Lund University / EITF20/ Liang Liu 2015

RAID

Redundant Array of Inexpensive
(Independent) Disks

Failures Overhead 8
RAID level tolerated data disks | comment
0 striped 0 0 JBOD, common
1 mirrored 1-8 8 high overhead
2 ECC 1 4 not used
3 bit parity 1 1 synchronized drives
4 Dblock parity 1 1
5 Dblock parity 1 1 common
distributed
6 row-diagonal 2 2 high availability
dual parity
01 mirrored stripes 1-8 8
10 striped mirrors 1-8 8

60 Lund University / EITF20/ Liang Liu 2015

Thanks and Good Luck!

61 Lund University / EITF20/ Liang Liu 2015

