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Virtual memory benifits
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 Using physical memory efficiently

• Allowing software to address more than physical memory

• Enables programs to begin before loading fully (some 

implementations)

• Programmers used to use overlays and manually control 

loading/unloading (if the program size is larger than mem size)

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

 Using physical memory safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other, because they operate in 

different address space (or limited mem space)

• User processes cannot access priviledged information
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Virtual memory concept
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 Is part of memory hierarchy

• The virtual address space is divided 

into pages (blocks in Cache)

• The physical address space is 

divided into page frames

• A miss is called a page fault

• Pages not in main memory are 

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping) 

mechanism
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Page identification: address mapping
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 4Byte per page table entry 

 Page table will have

220*4=222=4MByte

 64 bit virtual address,16 KB 

pages →

264/214*4=252=212TByte

 Solutions

• Multi–level page table

• Inverted page table
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Multi-level PT
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Page identification

7

 How do we avoid two (or more) memory references for each 

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table 

walker
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Summary memory hierarchy
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The memory hierarchy of AMD Opteron

9

 Separate Instr & Data TLB 

and Caches

 2-level TLBs
• L1 TLBs fully associative

• L2 TLBs 4 way set associative

 Write buffer (and Victim 

cache)

 Way prediction

 Line prediction: prefetch

 hit under 10 misses

 1 MB L2 cache, shared, 16 

way set associative, write 

back
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Take a step back
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 So far

• Performance, Quantitative principles

• Instruction set architectures, ISA

• Pipelining, ILP

• Memory systems, cache, virtual memory

 Coming

• Storage Systems, I/O

• Course summary
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Computer function and component
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Motherboard
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AGP - Accelerated Graphics Port

IDE - Integrated Drive Electronics 

PCI - Peripheral Component Interconnect 

USB - Universal Serial Bus 

SATA - Serial Advanced Technology Attachment

DDR - Double Date Rate 

DVI - Digital Visual Interface 

HDMI - High-Definition Multimedia Interface

BIOS - Basic Input/Output System 
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Chip-set architecture
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Outside the processor and memory
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Storage Systems

I/O via BUS
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I/O
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Computers useless without I/O

Over time, literally thousands of forms of computer I/O: 

punch cards to brain interfaces

 Broad categories:

• Secondary/Tertiary storage (flash/disk/tape)

• Network (Ethernet, WiFi, Bluetooth, LTE)

• Human-machine interfaces (keyboard, mouse, touchscreen, 

graphics, audio, video, neural,…)

• Printers (line, laser, inkjet, photo, 3D, …)

• Sensors (process control, GPS, heartrate, …)

• Actuators (valves, robots, car brakes, …)

Mix of I/O devices is highly application-dependent
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Who cares about I/O?
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 CPU performance increases dramatically

 I/O system performance limited by mechanical delays 

⇒ less than 10% performance improvement per year

 Amdahl’s law: system speedup limited by the slowest 

component:

• Assume 10% I/O

• CPU speedup = 10 ⇒ System speedup = 5

• CPU speedup = 100 ⇒ System speedup = 10

 I/O will more and more become a bottleneck!

 
enhanced

enhanced
enhanced

overall

Speedup

Fraction
  Fraction 1

1
  Speedup
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Synchronous/Asynchronous I/O
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 Synchronous I/O

• Request data

• Wait for data

• Use data

 Asynchronous I/O

• Request data

• Continue with other things

• Block when trying to use data

• Compare non-blocking caches in out-of-order CPUs

• Multiple outstanding I/O requests
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I/O technologies
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 The techniques for I/O have evolved (and sometimes 

unevolved): 

• Direct control: CPU controls device by reading/writing data lines 

directly 

• Polled I/O: CPU communicates with hardware via built-in 

controller; busy-waits (sampling) for completion of commands

• Driven I/O: CPU issues command to device, gets interrupt on 

completion 

• Direct memory access: CPU commands device, which transfers 

data directly to/from main memory (DMA controller may be 

separate module, or on device). 

• I/O channels: device has specialized processor, interpreting main 

CPU only when it is truly necessary. CPU asks device to execute 

entire I/O program
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Bus-based interconnect
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 Buses are the number one technology to connect the 

CPU with memory and I/O subsystems

• Advantages: Low cost, shared medium to connect a variety of 

devices; flexible, expandable

• Disadvantages: Inherent problem – limited bandwidth; Bandwidth 

is limited by bus length and number of devices
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Single bus vs multiple bus
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Single Bus

 Lots of devices on one bus leads to: 

• Propagation delays; clock skew (100MHz) 

• Long data paths mean that co-ordination of bus use can adversely 

affect performance 

• Bus may become bottleneck if aggregate data transfer approaches 

bus capacity 

Most systems use multiple buses to overcome these 

problems 
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Single bus vs multiple bus
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Multiple Bus

• Allows system to support wide variety of I/O devices 

• Insulates memory-to-process traffic from I/O traffic 
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Example: Intel

23



Lund University / EITF20/ Liang Liu 2015

Example: ARM
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Producer-server model
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System response time vs Think time
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Interactive environments:

 Each interaction or transaction has 3 parts:

• Entry Time: time for user to enter command

• System Response Time: time between user entry & system replies

• Think Time: Time from response until user begins next command
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Buses
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SATA revision 3.2 (16 Gbit/s, 1969 MB/s)

USB 3.1 Gen2 (10Gbit/s)

PCIe 4.0 (15.7Gbit/s/lane, 252Gbit/s for 16X)

10GBASE-PR 10 Gbit/s
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Google view of storage hierarchy
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Google view of storage hierarchy
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Google view of storage hierarchy
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Cost vs access time
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Hard disk revealed
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Hard disk revealed (video)
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Hard disk anatomy
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The organization of a disk
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Purpose
• Long time, non-volatile storage

• Large, inexpensive, slow level in 

the memory hierarchy

Characteristics:
• Seek time (3 - 8 -15 ms)

• Rotational latency (2 - 4 - 8 ms)

Transfer rate
• 10 - 100 - 200 Mbyte/s

Capacity
• Terabytes

• Quadruples every 3 years
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First hard disk
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The world's first hard drive, first introduced in 1956 -- IBM's 5MB Random 

Access Memory Accounting: RAMAC®, magnetic-disk memory storage. It 

stored information on fifty disks, which spun at 1,200 rpm. 
” These disks are mounted so as to rotate about a vertical axis, with a spacing of three tenths of an 

inch between disks. This spacing permits two magnetic heads to be positioned to any one of the 

100 concentric tracks which are available on each side of each disk. Each track contains 500 

alphanumeric characters. Total storage capacity: 5,000,000 characters. The two recording heads 

are mounted in a pair of arms which are moved, by a feed-back control system, in a radial direction 

to straddle a selected disk.”

5 Mbyte storage
>1 ton
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Extreme hard disk
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Toshiba introduced the first 

0.85" hard drive and shipped 

2GB and 4GB units in 2005. 

weigth < 10 grams
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Disk technology trends
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Processing power doubles every 18 months

Memory size doubles every 18 months

Disk capacity doubles every 18 months

Disk positioning rate (seek & rotate) doubles every ten 

years!
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DRAM disks?
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Can the access time gap be filled with other technologies?

Cost is higher but SSD coming strong!
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HDD vs. SSD
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Typical read and write rates
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Samsung flash internals
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SSD Logic components
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Transistor
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Courtesy of Intel

Principle:

By applying a voltage to the gate 

the current between the drain 

and the source can be controlled. 

Several different types of

transistors exist with different 

properties.

Source

Drain

Gate

p-

Gate

DrainSource

substrate

PMOS
p-
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Flash memory cell
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EPROM, EEPROM and Flash has different ways of controlling the 

charge of the floating gate

WL

BL
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Power consumption
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Direct memory access (DMA)
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 DMA is a feature of computer systems that allows 

certain hardware subsystems to access main system 

(RAM) memory independently of the CPU

Processor Main Memory

Disk

Printer Keyboard
DMA 

Controller

Disk
Network 

Interface

Disk/DMA 

Controller
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DMA: operation
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 Data transfer between I/O and memory

• Data transfer preparation
 DMA Address Register contains the memory address, Word Count Register

 Commands specify transfer options, DMA transfer mode, the direction

• Control grant
 DMA sends a Bus Request (setting BR to 1)

 When it is ready to grant this request, the CPU sets it’s Bus grant signal, BG to 1

• Data transfer modes
 Bust mode/Cycle stealing mode/Transparent mode 
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DMA: performance
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Example: 1000 transfers of 1 byte

10 Mbyte/s transfer rate ⇒ 0.1 µs/byte

1000 bytes ⇒ 100 µs

 Interrupt driven

• 1000 interrupts at 2 µs each

• 1000 interrupt service routines at 98 µs each

• Totals 0.1 CPU seconds

 DMA

• 1 DMA set-up sequence at 50 µs

• 1 interrupt at 2 µs

• 1 interrupt service sequence at 98 µs

• Totals 0.00015 CPU seconds



Lund University / EITF20/ Liang Liu 2015

DMA: example on massive MIMO testbed
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100X
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System component & architecture
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50 NI USRP

8 Ettus OctoClock-G

4 NI PXIe-1085 chassis

NI PXIe-8135 

Controller

Printed antenna array
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System component & architecture
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10 DMA channel 

Up to 800 

MB/s/direction

2.8 GB/s

bidirectional

Clock/PPS

Distribution

network
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Computing platform
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 I7 CPU as controller and 50 Xilinx FPGA as 

processing platform

Processor Main Memory

FPGAFPGA

DMA 

Controller

FPGAFPGA

DMA 

Controller

FPGAFPGA

DMA 

Controller

PCIe

50
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Connections
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Connections
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Connections
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Routing 
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P
C

Ie

DMAOutput Buffer

DMAOutput Buffer

MUX Box

P
C

Ie

Contr

oller



Lund University / EITF20/ Liang Liu 201559

Intel’s new computing platform
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FPGA
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• What is FPGA?

– Field Programmable Gate Array

Configurable

logic blocks 
Interconnects

IO blocksConfiguration

memory
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FPGA

61
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FPGA
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Configurable logic block (CLB) contains several slices
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FPGA vs CPU

63

Intel Itanium 2 Xilinx Virtex-II Pro

(XC2VP100)

Technology 0.13 µm 0.13 µm

Clock speed 1.6 GHz 180 MHz

Internal memory bandwidth 102 GBytes/S 7.5 TBytes/S

# Processing units 5 FPU (2 MACs+1 FPU) 

6 MMU

6 Integer units

212 FPU or

300+Integer units or

…

Power consumption 130 W 15 W

Peak performance 8 GFLOPs 38 GFLOPs

Sustained performance ~2GFLOPs ~19 GFLOPs

IO/External memory 

bandwidth

6.4 GBytes/S 67 GBytes/S
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Reliability / Availability – Dependability
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 Definitions:

• Reliability – Is anything broken?

• Availability – Is the system available for the user?

• Dependability – Is the system doing what it is supposed to do?

Why is this an issue?

• Small disks and large disks cost the same / byte

• An array of N small disks can achieve higher bandwidth than one 

large disk

• However, the reliability is 1/N of the reliability of a single disk
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Interlude - Google experience - Jeff Dean
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RAID

67

Redundant Array of Inexpensive 

(Independent) Disks
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Disk mirroring – RAID-1
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Bit Parity – RAID 3
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Block-Interleaved Parity – RAID 5
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Summary I/O
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I/O:

 I/O performance is 

important!

 The task of the I/O system 

designer:

• meet performance needs

• cost-effective

• reliability, availability

 I/O system parts

• CPU interface

• Interconnect technology

• Device performance

Disks:

 Disks have moving parts 

leading to long service 

times

 RAID disk arrays provide 

high bandwidth, high 

capacity disk storage at a 

reasonable cost

 SSD is faster and more 

expensive


