
Lund University / EITF20/ Liang Liu 2015

EITF20: Computer Architecture
Part 5.1.1: Virtual Memory

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

2

Lund University / EITF20/ Liang Liu 2015

Memory hierarchy

3

Lund University / EITF20/ Liang Liu 2015

Cache performance

4

Lund University / EITF20/ Liang Liu 2015

Cache optimization

5

Lund University / EITF20/ Liang Liu 2015

Reduce miss rate

6

 The three C’s:

• Compulsory – misses in an infinite cache

• Capacity – misses in a fully associative cache

• Conflict – misses in an N-way associative cache

 How do we reduce the number of misses?

• Change cache size?

• Change block size?

• Change associativity?

• Change compiler?

• Other tricks!

Which of the three C’s are affected?

Lund University / EITF20/ Liang Liu 2015

Reduce misses 1: increase block size

7

 Increased block size utilizes the spatial locality

 Too big blocks increases miss rate

 Big blocks also increases miss penalty

Beware - impact on average memory access time

Lund University / EITF20/ Liang Liu 2015

Reduce misses 2: change associativity

8

Beware - impact on average memory access time

Rule of thumb: A direct mapped cache of size N has the

same miss rate as a 2-way set associative cache of size N/2

 Hit time increases

with increasing

associativity

(averagely)

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

9

Basic idea: Reorganize code to improve locality

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2

arrays

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

 Loop Fusion

• Combine two independent loops that have same looping and some

variables overlap

 Blocking

• Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

10

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2

arrays

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflicts between val and key

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

11

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

• If x[i][j] and x[i][j+1] are adjacent (row major)

/* Before */

for (k = 0; k < 100; k++)

for (j = 0; j < 100; j++)

for (i = 0; i < 5000; i++)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k++)

for (i = 0; i < 5000; i++)

for (j = 0; j < 100; j++)

x[i][j] = 2 * x[i][j];

Depending on the storage of the matrix

Sequential accesses instead of striding through memory every

100 words

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

12

 Block (matrix multiplication)

/* Before */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

r = 0;

for (k = 0; k < N; k++)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

}

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

13

White means not touched yet

 Light gray means touched a while ago

 Dark gray means newer accesses

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

14

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B-1,N); j++) {

r = 0;

for (k = kk; k < min(kk+B-1,N); k++)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

}

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

15

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

16

Lund University / EITF20/ Liang Liu 2015

Reduce misses 4: Victim cache

17

How to combine fast hit time of direct mapped yet still avoid

conflict misses?

 Victim cache operation

• On a miss in L1, we check the Victim Cache

• If the block is there, then bring it into L1 and

swap the ejected value into the victim cache

• If not, fetch the block from the lower levels

 Norman Jouppi,1990

• a 4-entry victim cache removed 25% of conflict

misses for a 4 Kbyte direct mapped cache

 Used in AMD Athlon, HP and Alpha

machines

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

18

Lund University / EITF20/ Liang Liu 2015

Virtual memory

Above: The Burrough B5000 computer. The

first commercial machine with virtual

memory (1961).

Right: First experimental virtual memory.

The Manchester Atlas computer, which had

virtual memory backed on a magnetic drum.

Lund University / EITF20/ Liang Liu 2015

Memory hierarchy tricks

20

Lund University / EITF20/ Liang Liu 2015

Memory tricks (techniques)

21

“An engineer is a man who

can do for a dime what any

other can do for a dollar”

— Anonymous

“An engineer is a man who

can do for 16G what any

other can do for infinite.”

— Anonymous

Lund University / EITF20/ Liang Liu 2015

OS Processes/Virtual memory

22

 Run several programs at the same time

 Each having the full address space available (but only use part of it)

 Sharing physical memory among processes

 Reside and execute anywhere in memory – Relocation

 Program uses virtual memory address

 Virtual address is translated to physical address

 Should be completely transparent to program, minimal

performance impact

Lund University / EITF20/ Liang Liu 2015

Process address spaces

23

Lund University / EITF20/ Liang Liu 2015

Virtual memory benifits

24

 Using physical memory efficiently

• Allowing software to address more than physical memory

• Enables programs to begin before loading fully (some

implementations)

• Programmers used to use overlays and manually control

loading/unloading (if the program size is larger than mem size)

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

 Using physical memory safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other, because they operate in

different address space (or limited mem space)

• User processes cannot access priviledged information

Lund University / EITF20/ Liang Liu 2015

Virtual memory concept

25

 Is part of memory hierarchy

• The virtual address space is divided

into pages (blocks in Cache)

• The physical address space is

divided into page frames

• A miss is called a page fault

• Pages not in main memory are

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping)

mechanism

Lund University / EITF20/ Liang Liu 2015

“Virtual”

26

Why “virtual”?

• If you think it’s there, and it’s there... it’s real

• If you think it’s not there, and it’s not there... it’s non-existent

• If you think it’s not there, and it’s there... it’s transparent

• If you think it’s there, and it’s not there... it’s imaginary

 Virtual memory is imaginary memory

• It gives you the illusion of memory that’s not physically there

Lund University / EITF20/ Liang Liu 2015

4 memory hierarchy questions

27

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu 2015

Virtual memory parameters

28

 Size of VM determined by no of address bits

• 32-bits: ~4,000,000,000 (four billion) bytes

• 64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

 The backing store for VM (paging (swap) partition on disk)

is shared with the file system

Lund University / EITF20/ Liang Liu 2015

Page placement

29

Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

Lund University / EITF20/ Liang Liu 2015

Page placement

30

Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

 The high miss penalty makes it

• Necessary to minimize miss rate

• Possible to use software solutions to implement a fully associative

address mapping

Lund University / EITF20/ Liang Liu 2015

Page identification

31

 Assume

• 4GB VM composed of 220 4KB pages

• 64MB DRAM main memory composed of 16384 (214) page frames (of same

size)

 Only those pages (of the 220) that are not empty actually

exist

• Each is either in main memory or on disk

• Can be located with two mappings (implemented with tables)

Virtual address = (virtual page number, page offset)

VA = (VPN, offset)

32 bits = (20 bits + 12 bits)

Physical address = (real page number, page offset)

PA = (RPN, offset)

26 bits = (14 bits + 12 bits)

Lund University / EITF20/ Liang Liu 2015

Page identification

32

Lund University / EITF20/ Liang Liu 2015

Page identification: address mapping

33

 4Byte per page table entry

 Page table will have

220*4=222=4MByte

 64 bit virtual address,16 KB

pages →

264/214*4=252=212TByte

 One PT per program (100

program?)

 Solutions

• Multi–level page table

• Inverted page table

 Contains Real Page

Number

 Miscellaneous control

information

• valid bit,

• dirty bit,

• replacement information,

• access control

Lund University / EITF20/ Liang Liu 2015

Multi-level PT

34

 Problem:

• Can't hold all of the page tables in memory

• 1-Level Page Table can only be stored in memory (PA is needed)

 Solution: Page the page tables!

• Allow portions of the page tables to be kept in memory at one time

Lund University / EITF20/ Liang Liu 2015

Multi-level PT

35

With two levels of page tables, how big is each table?

• Say we allocate 10 bits to the primary page, 10 bits to the

secondary page, 12 bits to the page offset

• Primary page table is then 2^10 * 4 bytes per PTE = 4 KB

• Secondary page table is also 4 KB

• That's exactly the size of a page on most systems ...

 Issues

• Page translation has very high overhead (may have page fault for

the 2nd level PT)

• Up to three memory accesses plus potential disk I/Os!!

Lund University / EITF20/ Liang Liu 2015

Inveted page table

36

 Concept

• Contains an entry for each physical page, not for each logical page.

• The size is proportional to physical memory, not the virtual address space

 Feature

• Only one in the system (stores reverse mappings for all processes)

• Each entry contains has a tag containing the task id and the VA

Lund University / EITF20/ Liang Liu 2015

Virtual memory access

37

 Access steps

• CPU issues a load for virtual address

• Split into page, offset

• Look-up in the page table (main memory)

to translate page

• Concatenate translated page with offset

→ physical address

• A read is done from the main memory at

physical address

• Data is delivered to the CPU

Lund University / EITF20/ Liang Liu 2015

Page identification (TLB)

38

 How do we avoid two (or more) memory references for each

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table

walker

Lund University / EITF20/ Liang Liu 2015

Page identification (TLB)

39

 Translation look aside buffer (translation buffer)

• Tag: virtual address

• Data portion: physical address, control bits

• This example: Fully associative placement

Opteron data TLB organization

1. VPN is extracted

2. Protections checked

3. One of 40 entries

muxed (or miss

registered)

4. Physical page address

combined with offset to

generate real address

Lund University / EITF20/ Liang Liu 2015

Address translation and TLB

40

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

41

 Processor uses virtual addresses (VA) while caches and

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

42

 Use virtual addresses to both index cache and tag check

 Processes have different virtual address spaces

(mapping)

 Two virtual addresses may map to the same physical

address – synonyms or aliases

Lund University / EITF20/ Liang Liu 2015

Address translation cache and VM

43

Page size = L1 Cache size

Directly mapped 256 entries

64B/block

Lund University / EITF20/ Liang Liu 2015

Page replacement

44

Most important: minimize number of page faults

 Replacement in cache handled by HW

 Replacement in VM handled by SW

Page replacement strategies:

 FIFO – First-In-First-Out

 LRU – Least Recently Used

• Approximation

• Each page has a reference bit that is set on a reference

• The OS periodically resets the reference bits

• When a page needs to be replaced, a page with a reference bit that

is not set is chosen

Lund University / EITF20/ Liang Liu 2015

Write strategy

45

Write back or Write through?

Write back! + dirty bit

Write through is impossible to use:

• Too long access time to disk

• The write buffer would need to be very large

• The I/O system would need an extremely high bandwidth

Lund University / EITF20/ Liang Liu 2015

Page size

46

Larger page size?

 Advantages

• Size of page table =

• More efficient to transfer large pages

• More memory can be mapped → reducing TLB misses (# of entries

in TLB is limited)

 Disadvantages

• More wasted storage, internal fragmentation

• High bandwidth requirement

• Long process start-up times (if the process size is smaller than page

size)

Lund University / EITF20/ Liang Liu 2015

Cache vs VM

47

Cache-MM MM-disk

Access time ratio ("speed gap") 1:5 - 1:15 1:10000 - 1:1000000

Hit time 1-2 cycles 40-100 cycles

Hit ratio 0.90-0.99 0.99999-0.9999999

Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001

Miss penalty 10-100 cycles 1M-6M cycles

CPU during block transfer blocking/non-blocking task switching

Block (page) size 16-128 bytes 4Kbytes - 64Kbytes

Implemented in hardware hardware + software

Mapping Direct or set-associative Page table ("fully associative")

Replacement algorithm Not crucial Very important (LRU)

Write policy Many choices Write back

Direct access to slow memory Yes No

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

48

Lund University / EITF20/ Liang Liu 2015

Memory overview

49

Lund University / EITF20/ Liang Liu 2015

Basic L1 data cache

50

 64 Kbyte, 64 byte block

size ⇒ 1024 blocks

 write-back, write

allocate

 2-way set associative ⇒
512 sets

 8 block write buffer

(victim)

 LRU - 1 bit

Lund University / EITF20/ Liang Liu 2015

Data TLB

51

 40 page table entries

 Fully associative

 Valid bit, kernel & user read/write permissions, protection

Lund University / EITF20/ Liang Liu 2015

Page table structure

52

Lund University / EITF20/ Liang Liu 2015

AMD Opteron cache + TLB

53

Lund University / EITF20/ Liang Liu 2015

AMD64 Memory space

54

Lund University / EITF20/ Liang Liu 2015

The memory hierarchy of AMD Opteron

55

 Separate Instr & Data TLB

and Caches

 2-level TLBs

 L1 TLBs fully associative

 L2 TLBs 4 way set

associative

 Write buffer (and Victim

cache)

 Way prediction

 Line prediction: prefetch

 hit under 10 misses

 1 MB L2 cache, shared, 16

way set associative, write

back

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Virtual memory

 Case study AMD Opteron

 Summary

56

Lund University / EITF20/ Liang Liu 2015

Summary memory hierarchy

57

Lund University / EITF20/ Liang Liu 2015

Program behavior vs cache organization

58

Lund University / EITF20/ Liang Liu 2015

Example organizations

59

