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Memory hierarchy
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Cache performance
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Cache optimization
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Reduce miss rate
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 The three C’s:

• Compulsory – misses in an infinite cache

• Capacity – misses in a fully associative cache

• Conflict – misses in an N-way associative cache

 How do we reduce the number of misses?

• Change cache size?

• Change block size?

• Change associativity?

• Change compiler?

• Other tricks!

Which of the three C’s are affected?
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Reduce misses 1: increase block size
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 Increased block size utilizes the spatial locality

 Too big blocks increases miss rate

 Big blocks also increases miss penalty

Beware - impact on average memory access time
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Reduce misses 2: change associativity
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Beware - impact on average memory access time

Rule of thumb: A direct mapped cache of size N has the 

same miss rate as a 2-way set associative cache of size N/2

 Hit time increases 

with increasing 

associativity 

(averagely)
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Reduce misses 3: Compiler optimizations

9

Basic idea: Reorganize code to improve locality

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2 

arrays

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

 Loop Fusion

• Combine two independent loops that have same looping and some 

variables overlap

 Blocking

• Improve temporal locality by accessing “blocks” of data repeatedly vs. 

going down whole columns or rows
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Reduce misses 3: Compiler optimizations
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Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2 

arrays

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflicts between val and key
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Reduce misses 3: Compiler optimizations
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 Loop Interchange

• Change nesting of loops to access data in order stored in memory

• If x[i][j] and x[i][j+1] are adjacent (row major)

/* Before */

for (k = 0; k < 100; k++)

for (j = 0; j < 100; j++)

for (i = 0; i < 5000; i++)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k++)

for (i = 0; i < 5000; i++)

for (j = 0; j < 100; j++)

x[i][j] = 2 * x[i][j];

Depending on the storage of the matrix

Sequential accesses instead of striding through memory every 

100 words
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Reduce misses 3: Compiler optimizations
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 Block (matrix multiplication)

/* Before */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

r = 0;

for (k = 0; k < N; k++)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

}
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Reduce misses 3: Compiler optimizations
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White means not touched yet

 Light gray means touched a while ago

 Dark gray means newer accesses
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Reduce misses 3: Compiler optimizations
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/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B-1,N); j++) {

r = 0;

for (k = kk; k < min(kk+B-1,N); k++)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

}
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Reduce misses 3: Compiler optimizations
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Reduce misses 3: Compiler optimizations
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Reduce misses 4: Victim cache
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How to combine fast hit time of direct mapped yet still avoid 

conflict misses?

 Victim cache operation

• On a miss in L1, we check the Victim Cache

• If the block is there, then bring it into L1 and 

swap the ejected value into the victim cache

• If not, fetch the block from the lower levels

 Norman Jouppi,1990

• a 4-entry victim cache removed 25% of conflict 

misses for a 4 Kbyte direct mapped cache

 Used in AMD Athlon, HP and Alpha 

machines
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Virtual memory

Above: The Burrough B5000 computer.  The 

first commercial machine with virtual 

memory (1961). 

Right:  First experimental virtual memory.  

The Manchester Atlas computer, which had 

virtual memory backed on a magnetic drum.
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Memory hierarchy tricks
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Memory tricks (techniques)
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“An engineer is a man who

can do for a dime what any

other can do for a dollar”

— Anonymous

“An engineer is a man who

can do for 16G what any

other can do for infinite.”

— Anonymous



Lund University / EITF20/ Liang Liu 2015

OS Processes/Virtual memory
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 Run several programs at the same time

 Each having the full address space available (but only use part of it)

 Sharing physical memory among processes

 Reside and execute anywhere in memory – Relocation

 Program uses virtual memory address

 Virtual address is translated to physical address

 Should be completely transparent to program, minimal

performance impact
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Process address spaces
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Virtual memory benifits
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 Using physical memory efficiently

• Allowing software to address more than physical memory

• Enables programs to begin before loading fully (some 

implementations)

• Programmers used to use overlays and manually control 

loading/unloading (if the program size is larger than mem size)

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

 Using physical memory safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other, because they operate in 

different address space (or limited mem space)

• User processes cannot access priviledged information
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Virtual memory concept
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 Is part of memory hierarchy

• The virtual address space is divided 

into pages (blocks in Cache)

• The physical address space is 

divided into page frames

• A miss is called a page fault

• Pages not in main memory are 

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping) 

mechanism
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“Virtual”
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Why “virtual”?

• If you think it’s there, and it’s there... it’s real

• If you think it’s not there, and it’s not there... it’s non-existent

• If you think it’s not there, and it’s there... it’s transparent

• If you think it’s there, and it’s not there... it’s imaginary

 Virtual memory is imaginary memory

• It gives you the illusion of memory that’s not physically there
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4 memory hierarchy questions
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 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)
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Virtual memory parameters
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 Size of VM determined by no of address bits

• 32-bits:  ~4,000,000,000 (four billion) bytes

• 64-bits:  ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

 The backing store for VM (paging (swap) partition on disk) 

is shared with the file system
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Page placement
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Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns
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Page placement
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Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

 The high miss penalty makes it

• Necessary to minimize miss rate

• Possible to use software solutions to implement a fully associative 

address mapping
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Page identification
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 Assume 

• 4GB VM composed of 220 4KB pages

• 64MB DRAM main memory composed of 16384 (214) page frames (of same 

size)

 Only those pages (of the 220) that are not empty actually 

exist

• Each is either in main memory or on disk

• Can be located with two mappings (implemented with tables)

Virtual address = (virtual page number, page offset)

VA = (VPN, offset)

32 bits = (20 bits + 12 bits)

Physical address = (real page number, page offset)

PA = (RPN, offset)

26 bits = (14 bits + 12 bits)
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Page identification
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Page identification: address mapping
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 4Byte per page table entry 

 Page table will have

220*4=222=4MByte

 64 bit virtual address,16 KB 

pages →

264/214*4=252=212TByte

 One PT per program (100 

program?)

 Solutions

• Multi–level page table

• Inverted page table

 Contains Real Page 

Number

 Miscellaneous control 

information 

• valid bit, 

• dirty bit, 

• replacement information,

• access control
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Multi-level PT
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 Problem: 

• Can't hold all of the page tables in memory

• 1-Level Page Table can only be stored in memory (PA is needed) 

 Solution: Page the page tables!

• Allow portions of the page tables to be kept in memory at one time
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Multi-level PT
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With two levels of page tables, how big is each table?

• Say we allocate 10 bits to the primary page, 10 bits to the 

secondary page, 12 bits to the page offset

• Primary page table is then 2^10 * 4 bytes per PTE = 4 KB

• Secondary page table is also 4 KB

• That's exactly the size of a page on most systems ...

 Issues

• Page translation has very high overhead (may have page fault for 

the 2nd level PT)

• Up to three memory accesses plus potential disk I/Os!!
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Inveted page table
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 Concept

• Contains an entry for each physical page, not for each logical page. 

• The size is proportional to physical memory, not the virtual address space

 Feature

• Only one in the system (stores reverse mappings for all processes)

• Each entry contains has a tag containing the task id and the VA
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Virtual memory access
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 Access steps

• CPU issues a load for virtual address

• Split into page, offset

• Look-up in the page table (main memory) 

to translate page

• Concatenate translated page with offset 

→ physical address

• A read is done from the main memory at 

physical address

• Data is delivered to the CPU
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Page identification (TLB)
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 How do we avoid two (or more) memory references for each 

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table 

walker
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Page identification (TLB)
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 Translation look aside buffer (translation buffer)

• Tag: virtual address

• Data portion: physical address, control bits

• This example: Fully associative placement

Opteron data TLB organization

1. VPN is extracted

2. Protections checked

3. One of 40 entries 

muxed (or miss 

registered)

4. Physical page address 

combined with offset to 

generate real address
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Address translation and TLB

40



Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation
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 Processor uses virtual addresses (VA) while caches and 

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel
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Reduce hit time 2: Address translation
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 Use virtual addresses to both index cache and tag check

 Processes have different virtual address spaces 

(mapping)

 Two virtual addresses may map to the same physical 

address – synonyms or aliases
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Address translation cache and VM
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Page size = L1 Cache size

Directly mapped 256 entries

64B/block
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Page replacement
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Most important: minimize number of page faults

 Replacement in cache handled by HW

 Replacement in VM handled by SW

Page replacement strategies:

 FIFO – First-In-First-Out

 LRU – Least Recently Used

• Approximation

• Each page has a reference bit that is set on a reference

• The OS periodically resets the reference bits

• When a page needs to be replaced, a page with a reference bit that 

is not set is chosen
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Write strategy
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Write back or Write through?

Write back! + dirty bit

Write through is impossible to use:

• Too long access time to disk

• The write buffer would need to be very large

• The I/O system would need an extremely high bandwidth
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Page size
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Larger page size?

 Advantages

• Size of page table = 

• More efficient to transfer large pages

• More memory can be mapped → reducing TLB misses (# of entries 

in TLB is limited)

 Disadvantages

• More wasted storage, internal fragmentation

• High bandwidth requirement

• Long process start-up times (if the process size is smaller than page 

size)
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Cache vs VM
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Cache-MM MM-disk

Access time ratio ("speed gap") 1:5 - 1:15 1:10000 - 1:1000000

Hit time 1-2 cycles 40-100 cycles

Hit ratio 0.90-0.99 0.99999-0.9999999

Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001

Miss penalty 10-100 cycles 1M-6M cycles

CPU during block transfer blocking/non-blocking task switching

Block (page) size 16-128 bytes 4Kbytes - 64Kbytes

Implemented in hardware hardware + software

Mapping Direct or set-associative Page table ("fully associative")

Replacement algorithm Not crucial Very important (LRU)

Write policy Many choices Write back

Direct access to slow memory Yes No
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Memory overview
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Basic L1 data cache
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 64 Kbyte, 64 byte block 

size ⇒ 1024 blocks

 write-back, write 

allocate

 2-way set associative ⇒
512 sets

 8 block write buffer 

(victim)

 LRU - 1 bit
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Data TLB
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 40 page table entries

 Fully associative

 Valid bit, kernel & user read/write permissions, protection
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Page table structure
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AMD Opteron cache + TLB
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AMD64 Memory space
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The memory hierarchy of AMD Opteron
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 Separate Instr & Data TLB 

and Caches

 2-level TLBs

 L1 TLBs fully associative

 L2 TLBs 4 way set 

associative

 Write buffer (and Victim 

cache)

 Way prediction

 Line prediction: prefetch

 hit under 10 misses

 1 MB L2 cache, shared, 16 

way set associative, write 

back
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Summary memory hierarchy
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Program behavior vs cache organization
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Example organizations
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