UNIVERSITY

EITF20: Computer Architecture
Part 5.1.1: Virtual Memory

Liang Liu
liang.liu@eit.lth.se

1 Lund University / EITF20/ Liang Liu 2015

Outline

[] Reiteration

O Virtual memory

] Case study AMD Opteron
0 Summary

2 Lund University / EITF20/ Liang Liu 2015

Memory hierarchy

100s Bytes

0.25-0.5 ns Upper level

S program
Kbytes++ Instr. operands 1-8 bytes
0.5-25 ns

Faster A

cache cntl.

Mbytes++ Blocks 8-128 bytes

80-250 ns

0S
Gbytes Pages 512-16

1-10 ms Kbytes

operator

Infinite Flles Mbytes

e _

\J Larger

3 Lund University / EITF20/ Liang Liu 2015

Cache performance

Execution Time =

mem acCesSSes

| Pl ' : '
C x (C execution T+ Instruction

+ miss rate x miss penalty) « T¢

Three ways to increase performance:
@ Reduce miss rate
@ Reduce miss penalty
@ Reduce hit time
@ ... and increase bandwidth

remember:
Execution time is the only true measure!

4 Lund University / EITF20/ Liang Liu 2015

Cache optimization

Hit Band- Miss Miss HW
time width penalty rate complexity

Simple - - 0
Addr. transl. + 1
Way-predict + 1
Trace + 3
" Pipelined - + 1
Banked - 1
Nonblocking + + 3
Early start + 2
Merging write + 1
Multilevel + 2
Read priority + 1

Prefetch + + 2-3
Victim + + 2
Compiler + 0
Larger block - + 0
Larger cache - + 1
Associativity - + 1

5 Lund University / EITF20/ Liang Liu 2015

6

Reduce miss rate
] The three C’s:

Compulsory — misses in an infinite cache
Capacity — misses in a fully associative cache
Conflict — misses in an N-way associative cache

[J How do we reduce the number of misses?
Change cache size?
Change block size?
Change associativity?
Change compiler?
Other tricks!

Which of the three C’s are affected?

Lund University / EITF20/ Liang Liu 2015

Reduce misses 1: increase block size

] Increased block size utilizes the spatial locality
] Too big blocks increases miss rate
] Big blocks also increases miss penalty

10%
4K
[)\

Miss o [
rate 07
i A
0% ! —* ¥) 256K
16 32 64 128 256

Block size
© 2007 Elsevier, Inc. All rights resarved.

Beware - impact on average memory access time

7 Lund University / EITF20/ Liang Liu 2015

Reduce misses 2: change associativity

Rule of thumb: A direct mapped cache of size N has the
same miss rate as a 2-way set associative cache of size N/2

0.1

0.01 E
0.001 §

1e-04

miss rate

1e-05

1e-06 }

1K 4K 16K 64K 286K 1M Int
cache size

Beware - impact on average memory access time

] Hit time increases

with increasing
associativity
(averagely)

Lund University / EITF20/ Liang Liu 2015

9

Reduce misses 3: Compiler optimizations

Basic idea: Reorganize code to improve locality

] Merging Arrays
Improve spatial locality by single array of compound elements vs. 2
arrays

[J Loop Interchange
Change nesting of loops to access data in order stored in memory

[J Loop Fusion

Combine two independent loops that have same looping and some
variables overlap

] Blocking

Improve temporal locality by accessing “blocks” of data repeatedly vs.
going down whole columns or rows

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Merging Arrays
Improve spatial locality by single array of compound elements vs. 2
arrays

/* Before */
int val[SIZE];

int key[SIZE];

/* After */
struct merge {
int wval;
int key;
};

struct merge merged array[SIZE];

Reduces conflicts between val and key

10 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Loop Interchange
Change nesting of loops to access data in order stored in memory
If X[i][j] and X[i][j+1] are adjacent (row major)

/* Before */
for (k = 0; k < 100; k++)

x[i][J] = 2 * x[i][]];

/* After */
for (k = 0; k < 100; k++)
for (1 = 0; 1 < 5000; i++)
for (j = 0; j < 100; j++)
x[1]1[3]1 = 2 * x[1i][]]1;

Depending on the storage of the matrix
Sequential accesses instead of striding through memory every
100 words

11 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Block (matrix multiplication)

/* Before */
for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++) {
r =0;
for (k = 0; k < N; k++)
r=r + yl[1[k]l*z[k][]]~
x[1]1[]] = x;

12 Lund University / EITF20/ Liang Liu 2015

13

Reduce misses 3: Compiler optimizations

[J White means not touched yet
] Light gray means touched a while ago
] Dark gray means newer accesses

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2
0 0 0
2 2 2
i i k
3 3 3
4 4 4
5 5 5

© 2003 Elsevier Science (USA). All rights reserved.

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

/* After */
for (3 = 0; jj < N; 3j = ji+B)
for (kk = 0; kk < N; kk = kk+B)
for (- = 0; < N; i++)
for (j = 33; j < min(jj+B-1,N); j++) {
r =0;
for (k = kk; k < min(kk+B-1,N); k++)
r=r + y[i][k]l*z[k][]]~

x[1]1[3]1 = =x["]1[3] + x;

14 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] k j
X y z
0 1 2 3 4 5 0 1 2 3 4 5 0 3 4 5
0 0 0
2 2 2
i i k
3 3 3
4 4 4
5 5 5

15 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

Summary of Compiler Optimizations to
Reduce Cache Misses

vpenta (nasa7)
gmty (nasa7)
tomcatv

btrix (nasa7)

mxm (nasa7) [III0

spice
cholesky
(nasa?7)
compress
1 1.5 2 2.5 3
Performance Improvement
B merged M 00p B 100p fusion [blocking
arrays interchange

16 Lund University / EITF20/ Liang Liu 2015 <

Reduce misses 4: Victim cache

How to combine fast hit time of direct mapped yet still avoid
conflict misses?

J Victim cache operation

On a miss in L1, we check the Victim Cache

If the block is there, then bring it into L1 and
swap the ejected value into the victim cache

If not, fetch the block from the lower levels

EI Norman Jouppi,1990

a 4-entry victim cache removed 25% of conflict
misses for a 4 Kbyte direct mapped cache

) Used in AMD Athlon, HP and Alpha
machines

17 Lund University / EITF20/ Liang Liu 2015

Outline

O
I Virtual memory
O
O

18 Lund University / EITF20/ Liang Liu 2015

Virtual memory

Above: The Burrough B5000 computer. The
first commercial machine with virtual
memory (1961).

Right: First experimental virtual memory.
The Manchester Atlas computer, which had |
virtual memory backed on a magnetic drum. £

Lund University / EITF20/ Liang Liu 2015

Memory hierarchy tricks

Use two “magic” tricks

@ Make a slow memory seem faster
(Without making it smaller)

cache memory

20 Lund University / EITF20/ Liang Liu 2015

Memory tricks (techniques)

Memory
Chip
Store = |
QL
60 Chi
g Pl | size = 0!
Load €| @
2
Chip
“An engineer is a man who “An engineer is a man who
can do for a dime what any can do for 16G what any
other can do for a dollar” other can do for infinite.”
— Anonymous — Anonymous

21 Lund University / EITF20/ Liang Liu 2015

22

OS Processes/Virtual memory

[J Run several programs at the same time

[J Each having the full address space available (but only use part of it)
[J Sharing physical memory among processes

[J Reside and execute anywhere in memory — Relocation

] Program uses virtual memory address

] Virtual address is translated to physical address

[J Should be completely transparent to program, minimal
performance impact

| Physical memory l

Lund University / EITF20/ Liang Liu 2015

23

virtual addresses virtual addresses

virtual addresses

E

Process address spaces

Process #1

O«FFFFFFFF Stack |
-
S S R
............. .
L . Ploysacal
Ttmall ™ addressess
- e N
" -
R Data
PCl =N Cods "‘.. \i‘ -“"i 5
~ . Hea
e s Code
0S Eernel [« .. .,
0 0 e . | Stack
- .
Process #2 "*,,‘ "-_‘ Heap
T e Stack
OxFFFEFFEE Stack
- -
""""""" N 4| Code
Y I ‘..,w
.
Heap 4 05 Kernel
7
Data e
PC2—» Code -_...-"
085 Kernel [~
p 000000000
IOCS8s5 F...

Lund University / EITF20/ Liang Liu 2015

24

Virtual memory benifits

] Using physical memory efficiently
- Allowing software to address more than physical memory

Enables programs to begin before loading fully (some
Implementations)

Programmers used to use overlays and manually control
loading/unloading (if the program size is larger than mem size)

[J Using physical memory simply

Virtual memory simplifies memory management

Programmer can think in terms of a large, linear address space
[J Using physical memory safely

Virtual memory protests process’ address spaces

Processes cannot interfere with each other, because they operate in
different address space (or limited mem space)

User processes cannot access priviledged information

Lund University / EITF20/ Liang Liu 2015

Virtual memory concept

Virtual Physical

s address [l Is part of memory hierarchy

0 0

4K B B c - The virtual address space is divided
Ak & oK into pages (blocks in Cache)
12K D 12K]

16K A . - The physical address space is
Virtual memory 20K divided into page frames
— 24K B])
28K - Amiss is called a page fault

Pages not in main memory are

’ stored on disk
E—— s

©2007 Elsavier, Inc. All rights reserved.

] The CPU uses virtual addresses

[0 We need an address translation (memory mapping)
mechanism

25 Lund University / EITF20/ Liang Liu 2015

“Virtual”

0 Why “virtual”?
If you think it's there, and it’s there... it's real
If you think it's not there, and it's not there... it's non-existent
If you think it's not there, and it’s there... it's transparent
If you think it's there, and it's not there... it's imaginary

] Virtual memory is imaginary memory
It gives you the illusion of memory that’s not physically there

Physical
M e ey
ST T
SR
Ackdress Virtual Mernory
Space
Chip Disk Drive

26 Lund University / EITF20/ Liang Liu 2015

4 memory hierarchy questions

[J Q1: Where can a block be placed in the upper level?
(Block placement)

[J Q2: How is a block found if it is in the upper level?
(Block identification)

[J Q3: Which block should be replaced on a miss?
(Block replacement)

] Q4: What happens on a write?
(Write strategy)

Block

Lower level

27 Lund University / EITF20/ Liang Liu 2015

Virtual memory parameters

Regs | L1 L2 Main memory Disk

Access (ns) 0.2 | 0.5 7 100 10 000 000
Capacity (kB) 1 32 | 1000 8 000 000 1 000 000 000

Block size (B) | 8 | 64 | 128 | 4 000 - 16 0000

] Size of VM determined by no of address bits
32-bits: ~4,000,000,000 (four billion) bytes
64-bits: ~16,000,000,000,000,000,000 (sixteen quintillion) bytes

] The backing store for VM (paging (swap) partition on disk)
Is shared with the file system

28 Lund University / EITF20/ Liang Liu 2015

Page placement

] Where can a page be placed in main memory?
Cache access: ~ ns
Memory access: ~ 100 ns
Disk access: ~ 10, 000, 000 ns

— HIGH miss penalty

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Set Set Set Set
0 1 2 3

29 Lund University / EITF20/ Liang Liu 2015

Page placement

] Where can a page be placed in main memory?
Cache access: ~ ns

Memory access: ~ 100 ns
Disk access: ~ 10, 000, 000 ns

—> HIGH miss penalty

[J The high miss penalty makes it
Necessary to minimize miss rate

Possible to use software solutions to implement a fully associative
address mapping

30 Lund University / EITF20/ Liang Liu 2015

Page identification

] Assume
4GB VM composed of 220 4KB pages
64MB DRAM main memory composed of 16384 (214) page frames (of same
size)
] Only those pages (of the 220) that are not empty actually
exist
Each is either in main memory or on disk
Can be located with two mappings (implemented with tables)

Virtual address = (virtual page number, page offset)

31

VA
32 hits

Physical address
PA
26 bits

= (VPN,
= (20 bits +

= (real page number,
= (RPN,
= (14 bits +

offset)
12 bits)

page offset)
offset)
12 bits)

Lund University / EITF20/ Liang Liu 2015

32

Page identification

virtual address

virtual page #

offset

page table

— |page frame #

physical address |

—— > |page frame #

offset

I

Page table entry

physical memory

page
frame O

page
frame 1

page
frame 2

page
frame 3

Lund University / EITF20/ Liang Liu 2015

Page identification: address mapping

Virual sdes] 4Byte per page table entry
[e [o [Page table will have
Physical address 220*4:222:4 M Byte

- Page Offset Mo
poee H‘Hu‘“} 1 memary
— Table .
[J 64 bit virtual address,16 KB
N pages —

264/214+4=252=012T Byte
[J Contains Real Page

Number] One PT per program (100
[0 Miscellaneous control program?)

information 1 Solutions

. valid bit,

Multi—level page table

dirty bit,
/ Inverted page table

replacement information,
access control

33 Lund University / EITF20/ Liang Liu 2015

Multi-level PT

] Problem:

Can't hold all of the page tables in memory
1-Level Page Table can only be stored in memory (PA is needed)

] Solution: Page the page tables!
Allow portions of the page tables to be kept in memory at one time

virtual address

|primary page #[secondary page #| offset
Primary page
¢ abg :«'} };g Secondary page
tables (N)

-p| page table #

physical address ¥

page frame #

offset

—ppage frame #/4

physical memory

page
frame 0
page
frame 1
page
frame 2
page
frame 3

"
L

page
frame Y

34 Lund University / EITF20/ Liang Liu 2015

Multi-level PT

] With two levels of page tables, how big is each table?

Say we allocate 10 bits to the primary page, 10 bits to the
secondary page, 12 bits to the page offset

Primary page table is then 2710 * 4 bytes per PTE = 4 KB
Secondary page table is also 4 KB
That's exactly the size of a page on most systems ...

llssues

Page translation has very high overnead (may have page fault for
the 2nd level PT)

Up to three memory accesses plus potential disk I/0Os!!

35 Lund University / EITF20/ Liang Liu 2015

Inveted page table
] Concept

Contains an entry for each physical page, not for each logical page.
The size is proportional to physical memory, not the virtual address space

[] Feature
Only one in the system (stores reverse mappings for all processes)
Each entry contains has a tag containing the task id and the VA

‘ .

search

36 Lund University / EITF20/ Liang Liu 2015

Virtual memory access

[J Access steps

Virtual address space Physical address space
CPU issues a load for virtual address exco000000

Split into page, offset R 32::;;:\ ooooonn
Look-up in the page table (main memory) “\\

to translate page N \\
Concatenate translated page with offset : "\..\{;ji

— physical address SeEeies j{;;ff—{— -
Aread is done from the main memory at T /

physical address /, ot
Data is delivered to the CPU e Do

2 memory accesses!

37 Lund University / EITF20/ Liang Liu 2015

Page identification (TLB)

[J How do we avoid two (or more) memory references for each
original memory reference?
Cache address translations — Translation Look-aside Buffer (TLB)

TLB hit
virtual address — TLB »= physical address
— TLB miss
TLE write T
|
Table — - page table
walker it
page table
page not
present
page table write A —‘
disl<

38 Lund University / EITF20/ Liang Liu 2015

WwnN e

39

Page identification (TLB)

] Translation look aside buffer (translation buffer)
Tag: virtual address
Data portion: physical address, control bits
This example: Fully associative placement

Virtual page Page
VPN is extracted number offset

. <36> <12>
Protections checked | | |
One Of 40 entrieS <> .. <1><1> <36> <28>
muxed (or miss @ @ V RW U/S D A Tag Physical address
registered) =
Physical page address =
combined with offset to R | gﬁ‘;";;jor’eds‘i‘)mb”s
generate real address I , <12>
40-bit
® _’| 40:1 mux | ! <28> (4) physical
' v address

(High-order 28 bits of address)

OPTERON Opteron data TLB organization

PROCESSOR

4 AMDZD1

Lund University / EITF20/ Liang Liu 2015

40

Address translation and TLB

Virtual Address done in hardware
restart instruction h 1 done in OS software
> TLB Lookup done in software

logic

machine-independent

machine-dependent hit or hardware

miss

Page Table Walk
Check Permissions
age present else)
pagep denie ok

— TLB Reload Page Fault Exception Page Fault Exception Physical Address

“Page Not Present” “Protection Fault”

l

Load Page Terminate Process

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

] Processor uses virtual addresses (VA) while caches and
main memory use physical addresses (PA)

VA PA

hit

data

[J Use the virtual address to index the cache in parallel

data

41 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

] Use virtual addresses to both index cache and tag check

] Processes have different virtual address spaces
(mapping)

] Two virtual addresses may map to the same physical
address — synonyms or aliases

42 Lund University / EITF20/ Liang Liu 2015

Address translation cache and VM

[Virtual address <64> I

[Virtual page number <51> | Page offset <13> |
l Page size = L1 Cache size
|TLB tag compare address <43> I TLB index <8> I [L1 cache index <7> |Block offset <6>
64B/block

4, To CPU

Directly mapped 256 entries

L1 data <512>

TLB tag <43> TLB data <28> L1 cache tag <43>

L1 tag compare address <28>

I Physical address <41> |

| L2 tag compare address <19> | L2 cache index <16> | Block offset <6> |

To CPU

L2 cache tag <19> L2 data <512>

To L1 cache or CPU

£ 2007 Elsavier, Inc. Al rights resarved.

43 Lund University / EITF20/ Liang Liu 2015

Page replacement

[J Most important: minimize number of page faults

] Replacement in cache handled by HW
] Replacement in VM handled by SW

Page replacement strategies:
] FIFO - First-In-First-Out

[J LRU - Least Recently Used

Approximation
Each page has a reference bit that is set on a reference
The OS periodically resets the reference bits

When a page needs to be replaced, a page with a reference bit that
IS not set is chosen

44 Lund University / EITF20/ Liang Liu 2015

Write strategy

Write back or Write through?

] Write back! + dirty bit

] Write through is impossible to use:
Too long access time to disk
The write buffer would need to be very large
The 1/0O system would need an extremely high bandwidth

45 Lund University / EITF20/ Liang Liu 2015

Page size

Larger page size?

[J Advantages .
_ 2addrbffs 1
Size of page table = K * opagebits ' page size
More efficient to transfer large pages
More memory can be mapped — reducing TLB misses (# of entries
in TLB is limited)
] Disadvantages
More wasted storage, internal fragmentation
High bandwidth requirement

Long process start-up times (if the process size is smaller than page
size)

46 Lund University / EITF20/ Liang Liu 2015

Cache vs VM

Cache-MM MM-disk
Access time ratio ("speed gap") 1:5-1:15 1:10000 - 1:1000000
Hit time 1-2 cycles 40-100 cycles
Hit ratio 0.90-0.99 0.99999-0.9999999
Miss (page fault) ratio 0.01-0.10 0.00000001-0.000001
Miss penalty 10-100 cycles 1M-6M cycles

CPU during block transfer
Block (page) size
Implemented in
Mapping
Replacement algorithm
Write policy
Direct access to slow memory

blocking/non-blocking
16-128 bytes
hardware
Direct or set-associative
Not crucial
Many choices
Yes

task switching
4KDbytes - 64Kbytes
hardware + software

Page table (“fully associative")

Very important (LRU)
Write back
No

a7

Lund University / EITF20/ Liang Liu 2015

Outline

O
O
] Case study AMD Opteron
O

. iLoad_I‘ 1 Data |
—_J Store Cache

| e _ =
{o _Beecion | Al :

+| Llinstr

HT PHY, link 4 Stow 110 [Fuses |

— PLL o Thermal

48 Lund University / EITF20/ Liang Liu 2015

Memory overview

Barcelona

Memory
Controllers
3 L
y v vi vl vl
2x8B @ 667TMHz 8x2B @ 2GT/s

49 Lund University / EITF20/ Liang Liu 2015

50

Basic L1 data cac

he

Block
Block address offset @ CPU
<25> <9> <6> address
Tag | Index] |} Data Data
' 1 in out
Valid Tag Data
<1> <25> <64> *
(512 @ L
blocks) | H—>
Q& *
'
(512 @ =
blocks) [
® \)-JI_-? I 2:1 mux |
® S
Victim
buffer

2007 Elsavier, Inc. All ights reserved.

| Lower-level memory |

] 64 Kbyte, 64 byte block
size = 1024 blocks

1 write-back, write
allocate

] 2-way set associative =
512 sets

] 8 block write buffer
(victim)
] LRU -1 bit

Lund University / EITF20/ Liang Liu 2015

51

Data TLB

[0 40 page table entries
[J Fully associative
] Valid bit, kernel & user read/write permissions, protection

Virtual page Page
number offset
<36> <12>

<:) (:)<1> ess <1><1> <36> <28>
. 'V _RW US D A Tag Physical address

(Low-order 12 bits

L wwwy

of address)
Yo Y YYY <1e> I
= ; 7 A
@ =4 40'1_ TRiX <28> @ physical
L - » address

(High-order 28 bits of address)

© 2007 Elsavier, Inc. All rights reserved.

Lund University / EITF20/ Liang Liu 2015

Page table structure

63 48 47 39 38 30 29 21 20 12 1n 0

Page-directory | Page-table Page offset

Page-map L4
base addr (CR3)
Page-map L4 table
Page-directory
pointer table e
-directory
Page-mp entry mugee
' Page-dir-plr entry Page table
¢ . Page-dir entry ‘%
- ———————— .| .
= ’ Page-table entry
— .
— .
Physical address

| Physical page frame number | Page offset I

Main memory

52 Lund University / EITF20/ Liang Liu 2015

AMD Opteron cache + TLB

| Virtual address <64>

| Virtual page number =51= [Page offset =13=> |
| TLB tag compare address =43= | TLE index <=8= | | L1 cache index <7= | Block offset =6= |
To CPU
TLB tag <43> TLB data <28> L1 cacha lag <43> L1 data =512=

l L1 tag compare address <28=>

r ¥

L

| Physical address <=41=> |

L

| L2 tag compare address <19= | L2 cache

index <16>| Block offset <6> |

To CPU

L2 cache tag <19> L2 data =512=

53 Lund University / EITF20/ Liang Liu 2015

AMDG4 Memory space

Current 48-bit implementation 56-bit implementation Full 64-bit implementation
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Canonical "higher half"

Canonical
FFFFS8000 0POOAOOO "higher half"
Higher half
FFS800000 0OOPOOOO
Noncanonical Noncanonical
addresses addresses

007FFFFF FFFFFFFF

54 Lund University / EITF20/ Liang Liu 2015

The memory hierarchy of AMD Opteron

Virtual page Page . Data virtual page Page
number <36> offset <12> CPU Store queue/ number <36> offset <12>
pe | T b Instruction data out [T)
T <128> <64> — Data in <64>
———
()
(]) \gl
<4 <1> <36> <28> <4> <1> <36> l <28>
Prot V Tag Physical address Prot V Tag Physical address
| - D - |
T . T L] i
L @ - [! L b - | i
B @ ooe B8 vos
(40 PTEs) 40:1 mux 4 (40 PTEs) 40:1 mux
<28 <128 <64 <28
<4m <> <29> <28> <4> <1> <29> <28>
L2 Prot V Tag Physical address L2 Prot V Tag Physical address
<I>
| »/— D]
T T i
L L L
8 (4 groups 8 (4 groups
ot 128 PTEs) oi 128 PTEs)
<9> <G>
[Index ‘;anook oftset
! Data D
c 512 C
A A
c Cc
H [H
E e E
L~ ® \)h
?)
) S < -2 1 mux
(2 groups of 512 blocks) @ Sp—
L2
Prefetcher I @ | Address <38> | Data <512> {
4:1 mux] oo
i Victim
butter I | |)
40> 4
J
<128>
V D Tag Data ® @
L2 <245 <10> 1> <1> <24> <512 15>, <64>t
I Tag [Index] MM
C I @ " A E System chip
A | I M memory crossbar
c] N O T -
fpoee —ancec g cen <64> <64>
H — . R
E ©f [" owH @ [Hom]
(18 groups of 1024 blocks) e —— —_—

55

£ 2007 Elsavier, Inc. All rights resarved.

OO000 O OO0 O

Separate Instr & Data TLB
and Caches

2-level TLBs
L1 TLBs fully associative

L2 TLBs 4 way set
associative

Write buffer (and Victim
cache)

Way prediction
Line prediction: prefetch
hit under 10 misses

1 MB L2 cache, shared, 16
way set associative, write
back

Lund University / EITF20/ Liang Liu 2015

Outline
]
O
]
]

Summary

56 Lund University / EITF20/ Liang Liu 2015

57

Summary memory hierarchy

Hide CPU - memory performance gap
Memory hierarchy with several levels
Principle of locality

Cache memories:

@ Fast, small - Close to CPU
Hardware
TLB
CPU performance equation
Average memory access
time
@ Optimizations

Virtual memory:
@ Slow, big - Close to disk
@ Software
e TLB
@ Page-table
@ Very high miss penalty —
miss rate must be low
@ Also facilitates: relocation;

memory protection; and
multiprogramming

Same 4 design questions - Different answers

Lund University / EITF20/ Liang Liu 2015

Program behavior vs cache organization

Processor Pentium 4 (3.2 GHz) Opteron (2.8 GHz)
Data cache 8-way associative, 16 KB, 2-way associative, 64 KB,
64-byte block 64-byte block
.2 cache 8-way associative, 2 MB, 16-way associative, 1| MB,
128-byte block, inclusive of 64-byte block, exclusive of D cache
D cache
Prefetch 8 streams to L.2 I stream to L.2
7 3
S S RN —e— D cache: P4/Opteron | §
g‘; - —&— L2 cache: P4/Opteron (é
S :
{RR LTSI ., (W H
< :
& :
iy 3 rrececc AN\ errrenncuacncaninnsacnsarsenveavssnransvvasnagfosncncsannene 2
Q. .
= :
g 2 Bt o\ N e e s s e o S e e A .&1 ...
S >
e :
1 D T T o eancanmnaseaonontonenuessensnana\iosceennennonnanancssHunsonasanans
0 :
gzip vpr gcc mcf crafty wupwise swim mgrid applu mesa
SPECInt2000 SPECp2000

© 2007 Elsavier, Inc. All rights resanved.

58 Lund University / EITF20/ Liang Liu 2015

Example organizations

MPU AMD Opteron Intel Pentium 4 IBM Power 5 Sun Niagara
Instruction set architecture B80x86 (64b) 80x86 PowerPC SPARC v9
Intended application desktop desktop server server
CMOS process (nm) 90 90 130 90
Die size (mm?) 199 217 389 379
Instructions issued/clock 3 3 RISC ops 8 1
Processors/chip 2 1 2 8
Clock rate (2006) 2.8 GHz 3.6 GHz 2.0 GHz 1.2 GHz
Instruction cache per processor 64 KB, 12000 RISC op 64 KB, 16 KB,
2-way set trace cache 2-way set I-way set
associative (~96 KB) associative associative
Latency L1 I (clocks) 2 B 1 1
Data cache 64 KB, 16 KB, 32 KB, 8 KB,
per processor 2-way set 8-way set 4-way set I-way set
associative associative associative associative
Latency L1 D (clocks) 2 2 2 1
TLB entries (I/D/L.2 1/1.2 D) 40/40/512/512 128/54 102471024 64/64
Minimum page size 4 KB 4 KB 4 KB 8 KB
On-chip L2 cache 2x 1 MB, 2 MB, 1.875 MB, 3 MB,
I6-wz'1y set 8-wa-y set lO-we_ly set 2-way set
associative associative associative associative
.2 banks 2 1 = 4
Latency L.2 (clocks) 7 22 13 221,23 D
Off-chip L3 cache — — 36 MB, 12-way set —_
associative (tags on chip)
Latency L.3 (clocks) — —— 87 -
Block size (L1I/LL1D/1.2/1.3, bytes) 64 64/64/128/— 128/128/128/256 32/16/64/—
Memory bus width (bits) 128 64 64 128
Memory bus clock 200 MHz 200 MHz 400 MHz
1 1 4

Number of memory buses

Lund University / EITF20/ Liang Liu 2015

