
Lund University / EITF20/ Liang Liu 2015

EITF20: Computer Architecture
Part4.1.1: Cache - 2

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

• Bandwidth increase

• Reduce hit time

• Reduce miss penalty

• Reduce miss rate

 Summary

2

Lund University / EITF20/ Liang Liu 2015

Memory hierachy

3

AIM: Fast as cache; Large as disk; Cheap as possible

Lund University / EITF20/ Liang Liu 2015

Why?

4

 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die

Lund University / EITF20/ Liang Liu 2015

Why does caching work?

5

 A program access a relatively small portion of the

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items

whose addresses are close, tend to be referenced soon

Lund University / EITF20/ Liang Liu 2015

Cache measures

6

 hit rate = no of accesses that hit/no of accesses

• close to 1, more convenient with

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine

hit/miss

miss penalty: time to replace a block

• measured in ns or number of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

 out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty

Lund University / EITF20/ Liang Liu 2015

Four memory hierarchy questions

7

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

8

Lund University / EITF20/ Liang Liu 2015

Cache performance

9

Lund University / EITF20/ Liang Liu 2015

Cache performance, example

10

Lund University / EITF20/ Liang Liu 2015

Sources of Cache miss

11

 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache

block with a direct or set-associative address mapping

Lund University / EITF20/ Liang Liu 2015

Miss rate components – 3 C’s

12

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0

0 .02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1 -way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

Lund University / EITF20/ Liang Liu 2015

Miss rate (relative) components – 3 C’s

13

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1 -way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Lund University / EITF20/ Liang Liu 2015

Miss rate components

14

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Big Medium Small

Same Same Same

Conflict Miss High Medium Zero

Low(er) Medium High

Lund University / EITF20/ Liang Liu 2015

Miss rate components – 3 C’s

15

 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small

set-associative caches

Miss may move from one to another!

Lund University / EITF20/ Liang Liu 2015

Block size tradeoff

16

 In general, larger block size

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks:
especially for
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size

Lund University / EITF20/ Liang Liu 2015

Cache optimizations

17

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

18

Lund University / EITF20/ Liang Liu 2015

Cache optimizations

19

Lund University / EITF20/ Liang Liu 2015

Pipelined Cache

20

Greater penalty on misspredicted branches

Lund University / EITF20/ Liang Liu 2015

The MIPS R4000

21

 8 Stage Pipeline:

• IF – first half of fetching of instruction; PC selection happens here as well as

initiation of instruction cache access

• IS – second half of access to instruction cache

• RF – instruction decode and register fetch, hazard checking and also

instruction cache hit detection

• EX – execution, which includes effective address calculation, ALU operation,

and branch target computation and condition evaluation

• DF – data fetch, first half of access to data cache

• DS – second half of access to data cache

• TC – tag check, determine whether the data cache access hit

• WB – write back for loads and register-register operations

Instruction memory Reg Data memory Reg

IF IS RF EX DF DS TC WB

A
L

U

Lund University / EITF20/ Liang Liu 2015

Non-blocking Cache

22

Significantly increases the complexity of the cache controller

Lund University / EITF20/ Liang Liu 2015

Non-blocking Cache

23

 Non‐blocking cache or lockup‐free

• Allow data cache to continue to supply cache hits during a miss

 “hit under miss”

• Reduces the effective miss penalty by working during miss vs.

ignoring CPU requests

 “hit under multiple miss” or “miss under miss”

• May further lower the effective miss penalty by overlapping

multiple misses

• Pentium Pro allows 4 outstanding memory misses

 Hardware (comparing to OOO exe)?

• Registers and queues for track multiple memory requests

• Memory that supports multiple request: like multi-band memory (or

structure harzard)

• Control logic to keep track of dependencies and ensure precise

exceptions

• Precise exception

Lund University / EITF20/ Liang Liu 2015

Multi-bank

24

Multi-banked caches

• Divide into independent banks that can support simultaneous

accesses (e.g. vector processor/SIMD)

• 4 in L1 and 8 in L2 for Intel core i7

• Works best when even spread of accesses across banks (can

simultaneous access or interleaving)

• Sequential interleaving

Lund University / EITF20/ Liang Liu 2015

Improving main memory performance

25

Lund University / EITF20/ Liang Liu 2015

Interleaving

26

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

27

Lund University / EITF20/ Liang Liu 2015

Cache optimizations

28

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 1: KISS (Keep It Simple, Stupid)

29

Hit time critical since it affects clock rate.

 Smaller and simpler is faster:

• Fits on-chip (game changing by technology evolution)

• Simple cache allows data fetch and tag check to proceed in parallel

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 1: KISS (Keep It Simple, Stupid)

30

Hit time critical since it affects clock rate.

 Smaller and simpler is faster:

• Fits on-chip (game changing by technology evolution)

• Simple cache allows data fetch and tag check to proceed in parallel

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

31

 Processor uses virtual addresses (VA) while caches and

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

32

 Use virtual addresses to both index cache and tag check

 Processes have different virtual address spaces

 Two virtual addresses may map to the same physical

address – synonyms or aliases

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

33

 Dynamically find a sequence of executed instructions

(including taken branches) to make up a cache block

 A trace is a sequence of instructions starting at any point

in a dynamic instruction stream

 It is specified by a start address and the branch outcomes

of control transfer instructions

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

34

 Trace cache is accessed in parallel with instruction cache

• Hit ->Trace read into issue buffer

• miss -> from instruction cache

 Trace cache hit if

• Fetch address match

• Branch predictions match

 Trace cache is NOT on the critical path of instruction fetch

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

35

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

36

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 4: way prediction

37

 How to combine fast hit time of Direct Mapped and have the

lower conflict misses of 2‐way SA cache?

 Way prediction: keep extra bits in cache to predict the “way” or

block within the set, of next cache access.

• Multiplexor is set early to select desired block, only 1 tag comparison

performed that clock cycle in parallel with reading the cache data

• Miss -> check other blocks for matches in next clock cycle

Lund University / EITF20/ Liang Liu 2015

Reduce hit time 4: way prediction

38

 How to combine fast hit time of Direct Mapped and have the

lower conflict misses of 2‐way SA cache?

 Way prediction: keep extra bits in cache to predict the “way” or

block within the set, of next cache access.

• Multiplexor is set early to select desired block, only 1 tag comparison

performed that clock cycle in parallel with reading the cache data

• Miss -> check other blocks for matches in next clock cycle

 Accuracy: 90% for 2-way and 80% for 4-way (ARM Cortex-A8)

 Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

39

Lund University / EITF20/ Liang Liu 2015

Cache optimizations

40

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 1: Multilevel caches

41

 Use several levels of cache memory:

• The 1st level cache fast and small ⇒ match processing speed

• 2nd level cache can be made much larger and set-associative to

reduce capacity and conflict misses

• ... and so on for 3rd and 4th level caches

 On-chip or Off-chip?

• Today 4 levels on-chip

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 1: Multilevel caches

42

 Use several levels of cache memory:

• The 1st level cache fast and small ⇒ match processing speed

• 2nd level cache can be made much larger and set-associative to

reduce capacity and conflict misses

• ... and so on for 3rd and 4th level caches

 On-chip or Off-chip?

• Today 4 levels on-chip

AMAT = Hit TimeL1 + Miss RateL1  Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2  Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1  (Hit TimeL2 + Miss
RateL2 Miss PenaltyL2)

Lund University / EITF20/ Liang Liu 2015

Multilevel caches: execution time

43

Lund University / EITF20/ Liang Liu 2015

Multilevel caches: examples

44

Lund University / EITF20/ Liang Liu 2015

IBM z196

45

zEnterprise 196

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 2: Write buffers, Read priority

46

Write through:

• Using write buffers: RAW conflicts with reads on cache misses (first

write is still in the buffer when the LW needs the value)

• If simply wait for write buffer to empty might increase read miss penalty

by 50% (old MIPS 1000)

• Check write buffer contents before read; if no conflicts, let the memory

access continue

• Complicated cache control

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 2: Write buffers, Read priority

47

Write Back:

• Read miss replacing dirty block

• Normal: Write dirty block to memory, and then do the read (very long

latency and stalls the processor)

• Instead copy the dirty block to a write buffer, then do the read, and then

do the write

• CPU stall less since restarts as soon as read completes

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 2: Write buffers, Read priority

48

Merging write buffers

• Multi-word writes more efficient to memory

• The Sun T1 (Niagara) processor, among many others, uses write

merging

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 3: other tricks

49

Impatience

Don’t wait for full block before restarting CPU

 Early restart – fetch words in normal order but restart

processor as soon as requested word has arrived

 Critical word first – fetch the requested word first. Overlap

CPU execution with filling the rest of the cache block

Increases performance mainly with large block sizes.

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 4: Non-blocking caches

50

 Non-blocking cache ≡ lockup-free cache

• (+) Permit other cache operations to proceed when a miss has occurred

• (+) May further lower the effective miss penalty if multiple misses can

overlap

• (-) The cache has to book-keep all outstanding references –Increases

cache controller complexity

 Good for out-of-order pipelined CPUs

• The presence of true data dependencies may limit performance

• Requires pipelined or banked memory system (otherwise cannot

support)

Lund University / EITF20/ Liang Liu 2015

Reduce miss rate/penalty: hardware prefetching

51

 Hardware prefetching - If there is a miss for block X, fetch

also block X+1, X+2,... X+d

• Instruction prefetching
 Alpha 21064 fetches 2 blocks on a miss (Intel i7 on L1 and L2)

 Extra block placed in stream buffer or caches

 On miss check stream buffer (highly possible is there)

• Works with data blocks too (generally better with I-Cache but

depending on application)

Goal: overlap execution with speculative prefetching to cache

Lund University / EITF20/ Liang Liu 2015

Reduce miss rate/penalty: hardware prefetching

52

Goal: overlap execution with speculative prefetching to cache

 Potential issue

• Complicated cache control

• Relies on extra memory bandwidth that can be used without penalty

• Only useful if produce hit for next reference

• May polute cache (useful data is replaced)

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

53

Lund University / EITF20/ Liang Liu 2015

Cache optimizations

54

Lund University / EITF20/ Liang Liu 2015

Reduce miss rate

55

 The three C’s:

• Compulsory – misses in an infinite cache

• Capacity – misses in a fully associative cache

• Conflict – misses in an N-way associative cache

 How do we reduce the number of misses?

• Change cache size?

• Change block size?

• Change associativity?

• Change compiler?

• Other tricks!

Which of the three C’s are affected?

Lund University / EITF20/ Liang Liu 2015

Reduce misses 1: increase block size

56

 Increased block size utilizes the spatial locality

 Too big blocks increases miss rate

 Big blocks also increases miss penalty

Beware - impact on average memory access time

Lund University / EITF20/ Liang Liu 2015

Reduce misses 2: change associativity

57

Beware - impact on average memory access time

Rule of thumb: A direct mapped cache of size N has the

same miss rate as a 2-way set associative cache of size N/2

 Hit time increases

with increasing

associativity

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

58

Basic idea: Reorganize code to improve locality

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2

arrays

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

 Loop Fusion

• Combine two independent loops that have same looping and some

variables overlap

 Blocking

• Improve temporal locality by accessing “blocks” of data repeatedly vs.

going down whole columns or rows

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

59

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2

arrays

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflicts between val and key

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

60

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

• If x[i][j] and x[i][j+1] are adjacent (row major)

/* Before */

for (k = 0; k < 100; k++)

for (j = 0; j < 100; j++)

for (i = 0; i < 5000; i++)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k++)

for (i = 0; i < 5000; i++)

for (j = 0; j < 100; j++)

x[i][j] = 2 * x[i][j];

Depending on the storage paten of the matrix

Sequential accesses instead of striding through memory every

100 words

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

61

 Block (matrix multiplication)

/* Before */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

r = 0;

for (k = 0; k < N; k++)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

}

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

62

White means not touched yet

 Light gray means touched a while ago

 Dark gray means newer accesses

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

63

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B-1,N); j++) {

r = 0;

for (k = kk; k < min(kk+B-1,N); k++)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

}

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

64

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

65

Lund University / EITF20/ Liang Liu 2015

Reduce misses 4: Victim cache

66

How to combine fast hit time of direct mapped yet still avoid

conflict misses?

 Victim cache operation

• On a miss in L1, we check the Victim Cache

• If the block is there, then bring it into L1 and

swap the ejected value into the victim cache

• If not, fetch the block from the lower levels

 Norman Jouppi,1990

• a 4-entry victim cache removed 25% of conflict

misses for a 4 Kbyte direct mapped cache

 Used in AMD Athlon, HP and Alpha

machines

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

67

Lund University / EITF20/ Liang Liu 2015

Cache performance

68

Lund University / EITF20/ Liang Liu 2015

Cache optimization

69

