UNIVERSITY

EITF20: Computer Architecture
Part4.1.1: Cache - 2

Liang Liu
liang.liu@eit.lth.se

1 Lund University / EITF20/ Liang Liu 2015

Outline

] Reiteration

[0 Cache performance optimization
* Bandwidth increase
* Reduce hit time
* Reduce miss penalty
* Reduce miss rate

0 Summary

2 Lund University / EITF20/ Liang Liu 2015

Memory hierachy

More Costly Smaller

Access
Times

Less Costly
Larger

AIM: Fast as cache; Large as disk; Cheap as possible

3 Lund University / EITF20/ Liang Liu 2015

Why?

[J 1980: no cache in microprocessors

] 1995: 2-level caches in a processor package
] 2000: 2-level caches on a processor die

[J 2003: 3-level caches on a processor die

100,000

10,000 F

1,000 f

Processor

100 F

Performance

10 |

1980 1985 1990 1995 2000 2005

4 Lund University / EITF20/ Liang Liu 2015

Why does caching work?

[J A program access a relatively small portion of the
address space at any instant of time

] Two different types of locality:
Temporal locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

Spatial locality (Locality in space): If an item is referenced, items
whose addresses are close, tend to be referenced soon

5 Lund University / EITF20/ Liang Liu 2015

Cache measures

] hit rate = no of accesses that hit/no of accesses
close to 1, more convenient with

] miss rate = 1.0 = hit rate

] hit time: cache access time plus time to determine
hit/miss

] miss penalty: time to replace a block
measured in ns or number of clock cycles and depends on:
latency: time to get first word
bandwidth: time to transfer block
[J out-of-order execution can hide some of the miss penalty

[0 Average memory access time = hit time + miss rate *
miss penalty

© Lund University / EITF20/ Liang Liu 2015

Four memory hierarchy questions

[J Q1: Where can a block be placed in the upper level?
(Block placement)

[J Q2: How is a block found if it is in the upper level?
(Block identification)

[J Q3: Which block should be replaced on a miss?
(Block replacement)

] Q4: What happens on a write?

(Write strategy)

7 Lund University / EITF20/ Liang Liu 2015

Outline

Cache performance optimization

OOO0OoOooOoo0oao

8 Lund University / EITF20/ Liang Liu 2015

Cache performance

Execution Time =

mem accesses
instruction

IC % (CPloxecution + + miss rate « miss penalty) « T¢

Three ways to increase performance:
@ Reduce miss rate
@ Reduce miss penalty
@ Reduce hit time

However, remember:
Execution time is the only true measure!

O Lund University / EITF20/ Liang Liu 2015

Cache performance, example

CPU execution Time =
mem accesses

/ Pl | : . ' . / T,
C = (CPlexecution + — -~~~ * Miss rate x miss penalty) Tc
Example:

miss rate (%) 1

miss penalty (cycles) 50

megm HCCE:'SSES k

instruction
CPlincrease kx0.01 %50

10 Lund University / EITF20/ Liang Liu 2015

Sources of Cache miss

[J A cache miss can be classified as a:
Compulsory miss: The first reference is always a miss

Capacity miss: If the cache memory is to small it will fill up and
subsequent references will miss

Conflict miss: Two memory blocks may be mapped to the same cache
block with a direct or set-associative address mapping

3C’s

11 Lund University / EITF20/ Liang Liu 2015

Miss rate components — 3 C’s

0.14

0.12

o
=

0.08
0.06
0.04

Capacity

Miss Rate per Type

0.02

— © o
— (Q\|
—i
: Compulsor
Cache Size (KB) P y [* STON

12 Lund University / EITF20/ Liang Liu 2015

Miss rate (relative) components —3 C’s

100%
80%
60 %
40%

20%

Miss Rate per Type

0%

— (Q\ < 0 0] (@) AN
—

Cache Size (KB)

13 Lund University / EITF20/ Liang Liu 2015

14

Miss rate components

Direct Mapped

N-way Set Associative

Fully Associative

Cache Size Big Medium Small

Compulsory Miss Same Same Same
Conflict Miss High Medium Zero
Capacity Miss Low(er) Medium High

Lund University / EITF20/ Liang Liu 2015

Miss rate components — 3 C’s

[J Small percentage of compulsory misses
] Capacity misses are reduced by larger caches
] Full associativity avoids all conflict misses

[J Conflict misses are relatively more important for small
set-associative caches

Miss may move from one to another!

15 Lund University / EITF20/ Liang Liu 2015

Block size tradeoff

[l In general, larger block size

Miss
Penalty

Take advantage of spatial locality, BUT

Larger block size means larger miss penalty =>Takes longer time to fill

up the block

If block size is too big relative to cache size, miss rate will go up =>Too

few cache blocks

Average memory access time =

hit time + miss rate = miss penalty

Miss

Fewer blocks:
especially for

\ small‘lcache
_/

Block Size' Block Size]

Average
Rate ExpJoits spatial locality Access Time

3

Increased Miss Penalty
& Miss Rate

16 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW
time width penalty rate complexity

Simple + - 0
Addr. transl. - 1
Way-predict + 1
Trace - 3
Pipelined + 1
Banked + 1
Nonblocking + + 3
Early start + 2
Merging write + 1
Multilevel + 2
Read priority + 1
Prefetch + + 2-3
Victim + + 2
Compiler + 0
Larger block - - 0
Larger cache - + 1
Associativity + 1

17 Lund University / EITF20/ Liang Liu 2015

Outline

O
O
0 Bandwidth increase

O0O00

18 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW
time width penalty rate complexity
Simple + -
Addr. transl. +
Way-predict +
Trace +
Pipelined - +
Banked
Nonblocking +
Early start
Merging write
Multilevel
Read priority
Prefetch
Victim
Compiler
Larger block -
Larger cache -

Associativity -

+

+ 4+ |+ |+ |+]+

—L—nc::c::mﬁ—um—nmm—n—nm—n—nc:-

+ 4|+ |+ |+]|+

19 Lund University / EITF20/ Liang Liu 2015

Pipelined Cache

Address and Store Data From CPU

+
Tag Store Data

D Delayed Write Addr. | D Delayed Write Data

............... S B h
o l’
Tags LJ : Data

Hit? Load Data to CPU

Greater penalty on misspredicted branches

20 Lund University / EITF20/ Liang Liu 2015

21

The MIPS R4000

] 8 Stage Pipeline:

IF — first half of fetching of instruction; PC selection happens here as well as
initiation of instruction cache access

IS — second half of access to instruction cache

RF — instruction decode and register fetch, hazard checking and also
instruction cache hit detection

EX — execution, which includes effective address calculation, ALU operation,
and branch target computation and condition evaluation

DF — data fetch, first half of access to data cache

DS — second half of access to data cache

TC — tag check, determine whether the data cache access hit
WB — write back for loads and register-register operations

IF IS RF EX DF DS TC WB
Instruction memory [Reg ’>§_ﬂ Data memory Reg

(

Lund University / EITF20/ Liang Liu 2015

Non-blocking Cache

- Er—1 Stall CPU on miss
Miss
Miss Hit
ﬁ [ot 20— Hit under miss
=T ———1

Stall only when
result needed

Miss Hit Miss‘
| Mo —

=] Multiple out-standing misses
[EE=TFenafy]

Significantly increases the complexity of the cache controller

22 Lund University / EITF20/ Liang Liu 2015

Non-blocking Cache

[J Non-blocking cache or lockup-free
Allow data cache to continue to supply cache hits during a miss

C] “hit under miss”
Reduces the effective miss penalty by working during miss vs.
ignoring CPU requests

] “hit under multiple miss” or “miss under miss”

May further lower the effective miss penalty by overlapping
multiple misses

Pentium Pro allows 4 outstanding memory misses

[J Hardware (comparing to OO0 exe)?
Registers and queues for track multiple memory requests

Memory that supports multiple request: like multi-band memory (or
structure harzard)

Control logic to keep track of dependencies and ensure precise
exceptions

Precise exception

23 Lund University / EITF20/ Liang Liu 2015

Multi-bank

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

] Multi-banked caches

Divide into independent banks that can support simultaneous
accesses (e.g. vector processor/SIMD)

4 in L1 and 8 in L2 for Intel core i7

Works best when even spread of accesses across banks (can
simultaneous access or interleaving)

Sequential interleaving

24 Lund University / EITF20/ Liang Liu 2015

Improving main memory performance

ED
- -

P N
- - e

CPU
=)
1 s HEES — —

CPU
| Bus |

Memory Memory

T
bank 0

normal wide memory interleaving
memory

Improves bandwidth.

25 Lund University / EITF20/ Liang Liu 2015

26

Interleaving

Normal

access + cycle data

accezt + cycle

data

Interleaving 4-way

addr

accexs + cyole data

addr

acest +oycle | data

addr | accezz + cycle

data

addr | accesz+cycle | data

|a:ld.r |ﬂccess+cytle |data|

addr

access + cycle

data

Lund University / EITF20/ Liang Liu 2015

Outline

Reduce hit time

OOO0OoOooOoo0oao

27 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW

time width penalty rate complexity

Simple + -

Addr. transl. +

Way-predict +
+

Trace
Pipelined
Banked
Nonblocking
Early start
Merging write
Multilevel
Read priority
Prefetch
Victim
Compiler
Larger block
Larger cache -
Associativity -

+

+

+
== M= NW = =W ==O

++ [+ |+ |+]|+]+

+l+ |+ 4]+ |+

28 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 1: KISS (Keep It Simple, Stupid)

Hit time critical since it affects clock rate.

[0 Smaller and simpler is faster:
Fits on-chip (game changing by technology evolution)
Simple cache allows data fetch and tag check to proceed in parallel

Block

Block address offset CPU
<25> <9> <6> address
Tag l Index | I Data Data
1 in out
Valid Tag Data
<1> <25> <64> l
(512 ® |]
blocks) | Ima

!

(512 @ Lo
blocks) | i
@ 1) 2:1 mux |
® '
Victim
buffer
Y

| Lower-level memory l

2007 Elsevier, Inc. All ights reserved.

29 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 1: KISS (Keep It Simple, Stupid)

Hit time critical since it affects clock rate.
[0 Smaller and simpler is faster:

Fits on-chip (game changing by technology evolution)
Simple cache allows data fetch and tag check to proceed in parallel

900

o . 1-way o 2-way
|m 4-way @ 8-way

800 A

700 +

600

500 A

400

300 A

Access time in microseconds

200

100 4

16 KB 32KB 64 KB 128 KB 256 KB
Cache size

30 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

] Processor uses virtual addresses (VA) while caches and
main memory use physical addresses (PA)

VA PA

hit

data

[J Use the virtual address to index the cache in parallel

data

31 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 2: Address translation

] Use virtual addresses to both index cache and tag check

] Processes have different virtual address spaces

] Two virtual addresses may map to the same physical
address — synonyms or aliases

32 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

[0 Dynamically find a sequence of executed instructions
(including taken branches) to make up a cache block

D
Q a < AlB|] C | D 9

—

Al B C

(a) Instruction cache. (b) Trace cache.

[J A trace is a sequence of instructions starting at any point
In a dynamic instruction stream

[l It is specified by a start address and the branch outcomes
of control transfer instructions

33 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

D
C a T Al B| C D 9

—

AlBr™ C

(a) Instruction cache. (b) Trace cache.

] Trace cache is accessed in parallel with instruction cache
Hit ->Trace read into issue buffer
miss -> from instruction cache

] Trace cache hit if

Fetch address match
Branch predictions match

34 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

Instruction
Cache
n
] !
L 4 Instruction Latch
3*BB | A To Instruction
—] 0 n Buffers
>
Fetch Address A
—> 1
Trace Cache
n
7
- pe | s —7| 7
N‘\ hit?
A Take output from trace
cache if race cache hit;
T otherwise, take output from
instruction cache.
Line-Fill Buffer
T n
/

35 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

Integer Fetch 1PC as a Function of Irace Cache Size

13.5

—e- —e- ®
U 1"5 = ®w = = w ® W3R Wi - » = - = = = - "L - = = mc
Bt 106F - - - - = = = = = = = = = = - - - 4 oo ..o oo oo ¢ compress
= —— —H—|i
E """""" —————— ——— —8—ijpag
=t por|
———— e = f s ST

1500 2000 2500 3000 3500 4000
Trace Cache Entries

36 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 4: way prediction

[J How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

[0 Way prediction: keep extra bits in cache to predict the “way” or
block within the set, of next cache access.

Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data

Miss -> check other blocks for matches in next clock cycle

Block
Block address offset CPU
<25> <9> <6> address
Tag l Index] I Data Data
™1 in out
Valid Tag Data
<1> <25> <64> l
(512 ® "
blocks) | =
ON= l
(512 @ =
blocks) [
@ 2:1 mux
;:’?) l—‘—‘
Victim |

37 Lund University / EITF20/ Liang Liu 2015

Reduce hit time 4: way prediction

[0 How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

[0 Way prediction: keep extra bits in cache to predict the “way” or
block within the set, of next cache access.

Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data

Miss -> check other blocks for matches in next clock cycle

Hit Time

Way-Miss Hit Time Miss Penalty

] Accuracy: 90% for 2-way and 80% for 4-way (ARM Cortex-A8)
[0 Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

38 Lund University / EITF20/ Liang Liu 2015

Outline

Reduce miss penalty

OOO0OoOooOoo0oao

39 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW

time width penalty rate complexity

Simple + -

Addr. transl. +

Way-predict +
+

Trace

" Pipelined
Banked
Nonblocking +
Early start
Merging write

~Multilevel
Read priority
Prefetch
Victim
Compiler
Larger block -
Larger cache -
Associativity -

+
— PO = PO GO] |)] | =k O

++ [+ |+]|+]|+]|+

+l+|+]|+]+]|+

40 Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 1: Multilevel caches

] Use several levels of cache memory:
The 1st level cache fast and small = match processing speed

2nd level cache can be made much larger and set-associative to
reduce capacity and conflict misses

... and so on for 3rd and 4th level caches
] On-chip or Off-chip?
Today 4 levels on-chip

Broadwell

CPUID code 000308D4

L1 cache ' i Product 806548
Core code
. » L1 cache 64 KB per core

Larger L2 ; i by L2 cache 256 KB per care
‘ ‘ L3cache 2-6 MB (shared)

L4 cache 128 MB of eDREAM (Iris Pro
madels only)

Created 2014

Transistors 14 nmtransistars

, cache

41 Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 1: Multilevel caches

] Use several levels of cache memory:
The 1st level cache fast and small = match processing speed

2nd level cache can be made much larger and set-associative to
reduce capacity and conflict misses

... and so on for 3rd and 4th level caches
] On-chip or Off-chip?

Today 4 levels on-chip

AMAT = Hit Time ; + Miss Rate ; x Miss Penalty, ,

Miss Penalty, , = Hit Time_, + Miss Rate,, x Miss Penalty, ,

AMAT = Hit Time , + Miss Rate ; x (Hit Time , + Miss
Rate ,x Miss Penalty, ,)

42 Lund University / EITF20/ Liang Liu 2015

Multilevel caches:

Second-level
cache size (KB)

execution time

1.02
8192 i 106 B L2 hit = 8 clock cycles
. O L2 hit = 16 clock cycles

4006 l1.10
1.14

2048 L fgs
1024 L '17.63)
51—
256 p
100 125 150 175 200 225 250

Relative execution time

43

Lund University / EITF20/ Liang Liu 2015

Multilevel caches: examples

Cache

CPU CP L1 L2 | L3

GHz KB KB | MB
FX-51 2.2 | 64464 | 1024 -
ltanium 2 1.5 | 16+16 256 6
Pentium 4 3.2 12+8 512 -
(Pentium 4 EE) | 3.2 12+8 512 2
Core i7 3.5 | 32+32 256 8
Phenom Il 3 128 512 8
AMD Bulldozer 4 16+64 | 2048 8
IBM z196 52 | 64+128 | 1536 | 24

44 Lund University / EITF20/ Liang Liu 2015

IBM 2196

L3_0 Controller

L3_1 Controller

zEnterprise 196

45 Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 2: Write buffers, Read priority

] Write through:
Using write buffers: RAW conflicts with reads on cache misses (first
write is still in the buffer when the LW needs the value)

SW R3, 512(R0) :M[512] < R3 (cache index 0)
LW R1, 1024(R0) :R1 « M[1024] (cache index 0)
LW R2, 512(R0) ;R2 « M[512] (cache index 0)

If simply wait for write buffer to empty might increase read miss penalty
by 50% (old MIPS 1000)

Check write buffer contents before read; if no conflicts, let the memory
access continue

Complicated cache control

46 Lund University / EITF20/ Liang Liu 2015

a7

Reduce miss penalty 2: Write buffers, Read priority

] Write Back:

Read miss replacing dirty block

Normal: Write dirty block to memory, and then do the read (very long

latency and stalls the processor)

Instead copy the dirty block to a write buffer, then do the read, and then

do the write

CPU stall less since restarts as soon as read completes

-@
CPU || Cache || Memory
write
® ~@
CPU || Cache || Memory
replace

Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 2: Write buffers, Read priority

] Merging write buffers

Multi-word writes more efficient to memory
The Sun T1 (Niagara) processor, among many others, uses write

merging

Write address v

Write address \

100 1 |Mem[100]
108 1 |Mem[108]
116 1 |Mem[1186]
124 1 |[Mem[124]

100 1

Mem[100]

Mem[108]

Mem|[116]

Mem[124]

48 Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 3: other tricks

Impatience
Don’t wait for full block before restarting CPU

] Early restart — fetch words in normal order but restart
processor as soon as requested word has arrived

] Critical word first — fetch the requested word first. Overlap
CPU execution with filling the rest of the cache block

Increases performance mainly with large block sizes.

block

49 Lund University / EITF20/ Liang Liu 2015

Reduce miss penalty 4: Non-blocking caches

[J Non-blocking cache = lockup-free cache
(+) Permit other cache operations to proceed when a miss has occurred

(+) May further lower the effective miss penalty if multiple misses can
overlap

(-) The cache has to book-keep all outstanding references —Increases
cache controller complexity

[J Good for out-of-order pipelined CPUs
The presence of true data dependencies may limit performance

Requires pipelined or banked memory system (otherwise cannot
support)

50 Lund University / EITF20/ Liang Liu 2015

Reduce miss rate/penalty: hardware prefetching

Goal: overlap execution with speculative prefetching to cache

] Hardware prefetching - If there is a miss for block X, fetch
also block X+1, X+2,... X+d

Instruction prefetching
O Alpha 21064 fetches 2 blocks on a miss (Intel i7 on L1 and L2)
O Extra block placed in stream buffer or caches
O On miss check stream buffer (highly possible is there)

Works with data blocks too (generally better with I-Cache but
depending on application)

Prefetched
Instruction block

Req Stream
h lOCK El.-lﬂ'lBl"

(4 blxchs)

l L1 Unified L2
ﬂ Instruction ‘;l_" Cache
block

51 Lund University / EITF20/ Liang Liu 2015

CPU

52

Reduce miss rate/penalty: hardware prefetching

Goal:

overlap execution with speculative prefetching to cache

] Potential issue

2.20

2.00 F

Performance improvement
o2}
o

Complicated cache control

Relies on extra memory bandwidth that can be used without penalty
Only useful if produce hit for next reference

May polute cache (useful data is replaced)

1.49

-
=

1.45
: 1.40
: 1.32
: Jog 129
1 1i8 1io ‘i I I

gap mcft fam3d wupwise galgel facerec swim applu lucas
SPECIn2000 SPECp2000

© 2007 Exseviar, Inc. Al rights reserved

Lund University / EITF20/ Liang Liu 2015

Outline

Reduce miss rate

OOO0OoOooOoo0oao

53 Lund University / EITF20/ Liang Liu 2015

Cache optimizations

Hit Band- Miss Miss HW
time width penalty rate complexity
Simple + -
Addr. transl. +
Way-predict -
+

Trace
Pipelined
Banked
Nonblocking +
Early start
Merging write
Multilevel
Read priority
Prefetch
Victim
Compiler
Larger block -
Larger cache -

Associativity -

+

+ |+ |+ |+]+ +

—L—Lc:c::mx—nm—nmm—n—nm—a—no

+ |+ + |+ |+ |+

54 Lund University / EITF20/ Liang Liu 2015

Reduce miss rate
] The three C’s:

Compulsory — misses in an infinite cache
Capacity — misses in a fully associative cache
Conflict — misses in an N-way associative cache

[J How do we reduce the number of misses?
Change cache size?
Change block size?
Change associativity?
Change compiler?
Other tricks!

Which of the three C’s are affected?

55 Lund University / EITF20/ Liang Liu 2015

Reduce misses 1: increase block size

] Increased block size utilizes the spatial locality
] Too big blocks increases miss rate
] Big blocks also increases miss penalty

10%
4K
[)\

Miss o [
rate 07
i A
0% ! —* ¥) 256K
16 32 64 128 256

Block size
© 2007 Elsevier, Inc. All rights resarved.

Beware - impact on average memory access time

56 Lund University / EITF20/ Liang Liu 2015

57

Reduce misses 2: change associativity

Rule of thumb: A direct mapped cache of size N has the
same miss rate as a 2-way set associative cache of size N/2

0.1

0.01 E
0.001 §

1e-04

miss rate

1e-05

1e-06 }

1K 4K 16K 64K 286K 1M Int
cache size

Beware - impact on average memory access time

] Hit time increases

with increasing
associativity

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

Basic idea: Reorganize code to improve locality

] Merging Arrays
Improve spatial locality by single array of compound elements vs. 2
arrays

[J Loop Interchange
Change nesting of loops to access data in order stored in memory

[J Loop Fusion

Combine two independent loops that have same looping and some
variables overlap

] Blocking

Improve temporal locality by accessing “blocks” of data repeatedly vs.
going down whole columns or rows

58 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Merging Arrays
Improve spatial locality by single array of compound elements vs. 2
arrays

/* Before */
int val[SIZE];

int key[SIZE];

/* After */
struct merge {
int wval;
int key;
};

struct merge merged array[SIZE];

Reduces conflicts between val and key

59 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Loop Interchange
Change nesting of loops to access data in order stored in memory
If X[i][j] and X[i][j+1] are adjacent (row major)

/* Before */
for (k = 0; k < 100; k++)

x[i][J] = 2 * x[i][]];

/* After */
for (k = 0; k < 100; k++)
for (1 = 0; 1 < 5000; i++)
for (j = 0; j < 100; j++)
x[1]1[3]1 = 2 * x[1i][]]1;

Depending on the storage paten of the matrix
Sequential accesses instead of striding through memory every
100 words

60 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] Block (matrix multiplication)

/* Before */
for (1 = 0; 1 < N; i++)
for (j = 0; j < N; j++) {
r =0;
for (k = 0; k < N; k++)
r=r + yl[1[k]l*z[k][]]~
x[1]1[]] = x;

61 Lund University / EITF20/ Liang Liu 2015

62

Reduce misses 3: Compiler optimizations

[J White means not touched yet
] Light gray means touched a while ago
] Dark gray means newer accesses

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2
0 0 0
2 2 2
i i k
3 3 3
4 4 4
5 5 5

© 2003 Elsevier Science (USA). All rights reserved.

Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

/* After */
for (3 = 0; jj < N; 3j = ji+B)
for (kk = 0; kk < N; kk = kk+B)
for (- = 0; < N; i++)
for (j = 33; j < min(jj+B-1,N); j++) {
r =0;
for (k = kk; k < min(kk+B-1,N); k++)
r=r + y[i][k]l*z[k][]]~

x[1]1[3]1 = =x["]1[3] + x;

63 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

] k j
X y z
0 1 2 3 4 5 0 1 2 3 4 5 0 3 4 5
0 0 0
2 2 2
i i k
3 3 3
4 4 4
5 5 5

64 Lund University / EITF20/ Liang Liu 2015

Reduce misses 3: Compiler optimizations

Summary of Compiler Optimizations to
Reduce Cache Misses

vpenta (nasa7)
gmty (nasa7)
tomcatv

btrix (nasa7)

mxm (nasa7) [III0

spice
cholesky
(nasa?7)
compress
1 1.5 2 2.5 3
Performance Improvement
B merged M 00p B 100p fusion [blocking
arrays interchange

65 Lund University / EITF20/ Liang Liu 2015 <

Reduce misses 4: Victim cache

How to combine fast hit time of direct mapped yet still avoid
conflict misses?

J Victim cache operation

On a miss in L1, we check the Victim Cache

If the block is there, then bring it into L1 and
swap the ejected value into the victim cache

If not, fetch the block from the lower levels

EI Norman Jouppi,1990

a 4-entry victim cache removed 25% of conflict
misses for a 4 Kbyte direct mapped cache

) Used in AMD Athlon, HP and Alpha
machines

66 Lund University / EITF20/ Liang Liu 2015

Summary

67 Lund University / EITF20/ Liang Liu 2015

Cache performance

Execution Time =

mem acCesSSes

| Pl ' : '
C x (C execution T+ Instruction

+ miss rate x miss penalty) « T¢

Three ways to increase performance:
@ Reduce miss rate
@ Reduce miss penalty
@ Reduce hit time
@ ... and increase bandwidth

remember:
Execution time is the only true measure!

68 Lund University / EITF20/ Liang Liu 2015

Cache optimization

Hit Band- Miss Miss HW
time width penalty rate complexity

Simple - - 0
Addr. transl. + 1
Way-predict + 1
Trace + 3
" Pipelined - + 1
Banked - 1
Nonblocking + + 3
Early start + 2
Merging write + 1
Multilevel + 2
Read priority + 1

Prefetch + + 2-3
Victim + + 2
Compiler + 0
Larger block - + 0
Larger cache - + 1
Associativity - + 1

69 Lund University / EITF20/ Liang Liu 2015

