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Memory hierachy
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AIM:  Fast as cache; Large as disk; Cheap as possible
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Why?
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 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die
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Why does caching work?
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 A program access a relatively small portion of the 

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend 

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items 

whose addresses are close, tend to be referenced soon



Lund University / EITF20/ Liang Liu 2015

Cache measures
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 hit rate = no of accesses that hit/no of accesses

• close to 1, more convenient with

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine 

hit/miss

miss penalty: time to replace a block

• measured in ns or number of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

 out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty
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Four memory hierarchy questions
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 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)
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Cache performance
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Cache performance, example
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Sources of Cache miss
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 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and 

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache 

block with a direct or set-associative address mapping
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Miss rate components – 3 C’s

12
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Miss rate (relative) components – 3 C’s
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Miss rate components

14

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity  Miss

Big Medium Small

Same Same Same

Conflict Miss High Medium Zero

Low(er) Medium High
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Miss rate components – 3 C’s
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 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small 

set-associative caches

Miss may move from one to another!
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Block size tradeoff

16

 In general, larger block size 

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill 

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too 

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks: 
especially for 
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size
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Cache optimizations
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Cache optimizations
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Pipelined Cache
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Greater penalty on misspredicted branches
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The MIPS R4000
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 8 Stage Pipeline:

• IF – first half of fetching of instruction;  PC selection happens here as  well as 

initiation of instruction cache access

• IS – second half of access to instruction cache

• RF – instruction decode and register fetch, hazard checking and also 

instruction cache hit detection

• EX – execution, which includes effective address calculation, ALU operation, 

and branch target computation and condition evaluation

• DF – data fetch, first half of access to data cache

• DS – second half of access to data cache

• TC – tag check, determine whether the data cache access hit

• WB – write back for loads and register-register operations

Instruction memory Reg Data memory Reg

IF IS RF EX DF DS TC WB

A
L

U
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Non-blocking Cache

22

Significantly increases the complexity of the cache controller
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Non-blocking Cache

23

 Non‐blocking cache or lockup‐free 

• Allow data cache to continue to supply cache hits during a miss

 “hit under miss” 

• Reduces the effective miss penalty by working during miss vs. 

ignoring CPU requests

 “hit under multiple miss” or “miss under miss” 

• May further lower the effective miss penalty by overlapping 

multiple misses

• Pentium Pro allows 4 outstanding memory misses

 Hardware (comparing to OOO exe)?

• Registers and queues for track multiple memory requests

• Memory that supports multiple request: like multi-band memory (or 

structure harzard)

• Control logic to keep track of dependencies and ensure precise 

exceptions

• Precise exception
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Multi-bank
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Multi-banked caches

• Divide into independent banks that can support simultaneous 

accesses (e.g. vector processor/SIMD)

• 4 in L1 and 8 in L2 for Intel core i7

• Works best when even spread of accesses across banks (can 

simultaneous access or interleaving)

• Sequential interleaving
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Improving main memory performance
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Interleaving

26



Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Cache performance optimization

 Bandwidth increase

 Reduce hit time

 Reduce miss penalty

 Reduce miss rate

 Summary

27



Lund University / EITF20/ Liang Liu 2015

Cache optimizations
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Reduce hit time 1: KISS (Keep It Simple, Stupid)

29

Hit time critical since it affects clock rate.

 Smaller and simpler is faster:

• Fits on-chip (game changing by technology evolution)

• Simple cache allows data fetch and tag check to proceed in parallel
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Reduce hit time 1: KISS (Keep It Simple, Stupid)

30

Hit time critical since it affects clock rate.

 Smaller and simpler is faster:

• Fits on-chip (game changing by technology evolution)

• Simple cache allows data fetch and tag check to proceed in parallel
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Reduce hit time 2: Address translation

31

 Processor uses virtual addresses (VA) while caches and 

main memory use physical addresses (PA)

 Use the virtual address to index the cache in parallel
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Reduce hit time 2: Address translation

32

 Use virtual addresses to both index cache and tag check

 Processes have different virtual address spaces

 Two virtual addresses may map to the same physical 

address – synonyms or aliases



Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches

33

 Dynamically find a sequence of executed instructions 

(including taken branches) to make up a cache block

 A trace is a sequence of instructions starting at any point 

in a dynamic instruction stream

 It is specified by a start address and the branch outcomes 

of control transfer instructions
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Reduce hit time 3: trace caches

34

 Trace cache is accessed in parallel with instruction cache

• Hit ->Trace read into issue buffer

• miss -> from instruction cache

 Trace cache hit if

• Fetch address match

• Branch predictions match

 Trace cache is NOT on the critical path of instruction fetch
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Reduce hit time 3: trace caches

35



Lund University / EITF20/ Liang Liu 2015

Reduce hit time 3: trace caches
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Reduce hit time 4: way prediction

37

 How to combine fast hit time of Direct Mapped and have the 

lower conflict misses of 2‐way SA cache?

 Way prediction: keep extra bits in cache to predict the “way” or 

block within the set, of next cache access.

• Multiplexor is set early to select desired block, only 1 tag comparison 

performed that clock cycle in parallel with reading the cache data

• Miss -> check other blocks for matches in next clock cycle
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Reduce hit time 4: way prediction

38

 How to combine fast hit time of Direct Mapped and have the 

lower conflict misses of 2‐way SA cache?

 Way prediction: keep extra bits in cache to predict the “way” or 

block within the set, of next cache access.

• Multiplexor is set early to select desired block, only 1 tag comparison 

performed that clock cycle in parallel with reading the cache data

• Miss -> check other blocks for matches in next clock cycle

 Accuracy: 90% for 2-way and 80% for 4-way (ARM Cortex-A8)

 Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
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Cache optimizations

40
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Reduce miss penalty 1: Multilevel caches

41

 Use several levels of cache memory:

• The 1st level cache fast and small ⇒ match processing speed

• 2nd level cache can be made much larger and set-associative to 

reduce capacity and conflict misses

• ... and so on for 3rd and 4th level caches

 On-chip or Off-chip?

• Today 4 levels on-chip
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Reduce miss penalty 1: Multilevel caches

42

 Use several levels of cache memory:

• The 1st level cache fast and small ⇒ match processing speed

• 2nd level cache can be made much larger and set-associative to 

reduce capacity and conflict misses

• ... and so on for 3rd and 4th level caches

 On-chip or Off-chip?

• Today 4 levels on-chip

AMAT = Hit TimeL1 + Miss RateL1  Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2  Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1  (Hit TimeL2 + Miss 
RateL2 Miss PenaltyL2)
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Multilevel caches: execution time
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Multilevel caches: examples
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IBM z196
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zEnterprise 196
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Reduce miss penalty 2: Write buffers, Read priority
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Write through:

• Using write buffers:  RAW conflicts with reads on cache misses (first 

write is still in the buffer when the LW needs the value)

• If simply wait for write buffer to empty might increase read miss penalty 

by 50% (old MIPS 1000)

• Check write buffer contents before read; if no conflicts, let the memory 

access continue

• Complicated cache control
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Reduce miss penalty 2: Write buffers, Read priority

47

Write Back:

• Read miss replacing dirty block

• Normal: Write dirty block to memory, and then do the read (very long 

latency and stalls the processor)

• Instead copy the dirty block to a write buffer, then do the read, and then 

do the write

• CPU stall less since restarts as soon as read completes
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Reduce miss penalty 2: Write buffers, Read priority

48

Merging write buffers

• Multi-word writes more efficient to memory

• The Sun T1 (Niagara) processor, among many others, uses write 

merging
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Reduce miss penalty 3: other tricks

49

Impatience

Don’t wait for full block before restarting CPU

 Early restart – fetch words in normal order but restart 

processor as soon as requested word has arrived

 Critical word first – fetch the requested word first. Overlap 

CPU execution with filling the rest of the cache block

Increases performance mainly with large block sizes.
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Reduce miss penalty 4: Non-blocking caches

50

 Non-blocking cache ≡ lockup-free cache

• (+) Permit other cache operations to proceed when a miss has occurred

• (+) May further lower the effective miss penalty if multiple misses can 

overlap

• (-) The cache has to book-keep all outstanding references –Increases 

cache controller complexity

 Good for out-of-order pipelined CPUs

• The presence of true data dependencies may limit performance

• Requires pipelined or banked memory system (otherwise cannot 

support)
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Reduce miss rate/penalty: hardware prefetching

51

 Hardware prefetching - If there is a miss for block X, fetch 

also block X+1, X+2,... X+d

• Instruction prefetching
 Alpha 21064 fetches 2 blocks on a miss (Intel i7 on L1 and L2)

 Extra block placed in stream buffer or caches

 On miss check stream buffer (highly possible is there)

• Works with data blocks too (generally better with I-Cache but 

depending on application)

Goal: overlap execution with speculative prefetching to cache
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Reduce miss rate/penalty: hardware prefetching

52

Goal: overlap execution with speculative prefetching to cache

 Potential issue

• Complicated cache control 

• Relies on extra memory bandwidth that can be used without penalty

• Only useful if produce hit for next reference

• May polute cache (useful data is replaced)
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Cache optimizations
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Reduce miss rate

55

 The three C’s:

• Compulsory – misses in an infinite cache

• Capacity – misses in a fully associative cache

• Conflict – misses in an N-way associative cache

 How do we reduce the number of misses?

• Change cache size?

• Change block size?

• Change associativity?

• Change compiler?

• Other tricks!

Which of the three C’s are affected?
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Reduce misses 1: increase block size

56

 Increased block size utilizes the spatial locality

 Too big blocks increases miss rate

 Big blocks also increases miss penalty

Beware - impact on average memory access time
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Reduce misses 2: change associativity

57

Beware - impact on average memory access time

Rule of thumb: A direct mapped cache of size N has the 

same miss rate as a 2-way set associative cache of size N/2

 Hit time increases 

with increasing 

associativity
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Reduce misses 3: Compiler optimizations
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Basic idea: Reorganize code to improve locality

Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2 

arrays

 Loop Interchange

• Change nesting of loops to access data in order stored in memory

 Loop Fusion

• Combine two independent loops that have same looping and some 

variables overlap

 Blocking

• Improve temporal locality by accessing “blocks” of data repeatedly vs. 

going down whole columns or rows
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Reduce misses 3: Compiler optimizations
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Merging Arrays

• Improve spatial locality by single array of compound elements vs. 2 

arrays

/* Before */

int val[SIZE];

int key[SIZE];

/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reduces conflicts between val and key
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Reduce misses 3: Compiler optimizations
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 Loop Interchange

• Change nesting of loops to access data in order stored in memory

• If x[i][j] and x[i][j+1] are adjacent (row major)

/* Before */

for (k = 0; k < 100; k++)

for (j = 0; j < 100; j++)

for (i = 0; i < 5000; i++)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k++)

for (i = 0; i < 5000; i++)

for (j = 0; j < 100; j++)

x[i][j] = 2 * x[i][j];

Depending on the storage paten of the matrix

Sequential accesses instead of striding through memory every 

100 words
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Reduce misses 3: Compiler optimizations
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 Block (matrix multiplication)

/* Before */

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

r = 0;

for (k = 0; k < N; k++)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

}
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Reduce misses 3: Compiler optimizations
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White means not touched yet

 Light gray means touched a while ago

 Dark gray means newer accesses
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Reduce misses 3: Compiler optimizations

63

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B-1,N); j++) {

r = 0;

for (k = kk; k < min(kk+B-1,N); k++)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

}
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Reduce misses 3: Compiler optimizations
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Reduce misses 3: Compiler optimizations
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Reduce misses 4: Victim cache

66

How to combine fast hit time of direct mapped yet still avoid 

conflict misses?

 Victim cache operation

• On a miss in L1, we check the Victim Cache

• If the block is there, then bring it into L1 and 

swap the ejected value into the victim cache

• If not, fetch the block from the lower levels

 Norman Jouppi,1990

• a 4-entry victim cache removed 25% of conflict 

misses for a 4 Kbyte direct mapped cache

 Used in AMD Athlon, HP and Alpha 

machines
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Cache performance

68



Lund University / EITF20/ Liang Liu 2015

Cache optimization
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