
Lund University / EITF20/ Liang Liu 2015

EITF20: Computer Architecture
Part2.1.1: Instruction Set Architecture

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

2

Lund University / EITF20/ Liang Liu 2015

Main Content

 Computer Architecture

 Performance

Quantitative Principles

3

Lund University / EITF20/ Liang Liu 2015

What Computer Architecture?

4

Design

• ISA

• Orgnization (microarchitecture)

• Implementation

To meet requirements of

• Functionality (application, standards…)

• Price

• Performance

• Power

• Reliability

• Compatability

• Dependability

• ..

Lund University / EITF20/ Liang Liu 2015

Performance

5

Time to complete a task (Texe)

• Execution time, response time, latency

Task per day, hour…

• Total amount of tasks for given time

• Thoughput, bandwidth

Lund University / EITF20/ Liang Liu 2015

Quantitative Principles

6

This is intro to design and analysis

• Take advantage of parallelism

 ILP, DLP, TLP, ...

• Principle of locality

 90% of execution time in only 10% of the code

• Focus on the common case

 In makeing a design trade-off, favor the frquent case ove the

infrequent case

• Amdahl’s Law

 The performance improvement gained from uisng faster mode is

limited by the fraction of the time the faster mode can be used

• The Processor Performance Equation

Lund University / EITF20/ Liang Liu 2015

Amdahl’s Law

7

Best you could ever hope to do:

 enhanced
maximum Fraction - 1

1
 Speedup 

Lund University / EITF20/ Liang Liu 2015

Amdahl’s Law: example

8

New CPU is 10 times faster!

60% for I/O which remains almost the same…

 

 
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall











Apparently, its human nature to be attracted by 10X

faster, vs. keeping in perspective its just 1.6X faster

Lund University / EITF20/ Liang Liu 2015

Amdahl’s Law: example

9

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Lund University / EITF20/ Liang Liu 2015

Aspect of CPU performance

10

Lund University / EITF20/ Liang Liu 2015

Instructions are not created equally

11

Lund University / EITF20/ Liang Liu 2015

Average CPI: example

12

Invest resources where time is spent!

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

14

Lund University / EITF20/ Liang Liu 2015

Instruction Set

15

Serves as an interface between

software and hardware

Provides a mechanism by which

the software tells the hardware

what should be done

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

Lund University / EITF20/ Liang Liu 2015

Interface Design

16

A good interface

• Lasts through many implementations (portability, compatibility)

• Can be used in many different ways (generality)

• Provides sufficient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

Lund University / EITF20/ Liang Liu 2015

Example: RISC-CICS

17

RISC (Reduced Instruction Set Computing)

• Simple instructions

• MIPS, ARM, ...

• Easier to design, build

• Less power

• Larger code size (IC), but in total (byte)?

• Easier for compiler, but for optimization?

CISC (Complex Instruction Set Computing)

• Complex instructions

• VAX, Intel 80x86 (now RISC-like internally), ...

http://cs.stanford.edu/people/eroberts/courses/soco/proj

ects/risc/risccisc/

Lund University / EITF20/ Liang Liu 2015

Example: RISC-CICS

18

Lund University / EITF20/ Liang Liu 2015

ISA Classification

19

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Classification of instruction sets

• Register model

• The number of operands for instructions

• Addressing modes

• The operations provided in the instruction set

• Type and size of operands

• Control flow instructions

• Encoding

Lund University / EITF20/ Liang Liu 2015

ISA Design Issues

20

Where are operands stored?

• registers, memory, stack, accumulator

How many explicit operands are there?

• 0, 1, 2, or 3

How is the operand location specified?

• register, immediate, indirect, . . .

What type & size of operands are supported?

• byte, int, float, double, string, vector. . .

What operations are supported?

• add, sub, mul, move, compare . . .

How is the operation flow controlled?
• branches, jumps, procedure calls . . .

What is the encoding format
• fixed, variable, hybrid...

Lund University / EITF20/ Liang Liu 2015

ISA Classes: Where are operands stored

21

Lund University / EITF20/ Liang Liu 2015

ISA Classes

22

Lund University / EITF20/ Liang Liu 2015

Example: C=A+B

23

Stack Accumulator Register

(register-memory)

Register (load-
store)

Push A

Push B

Add

Pop C

Load A

Add B

Store C

Load R1, A

Add R1, B

Store C, R1

Load R1,A

Load R2, B

Add R3, R1, R2

Store C, R3

memory memory
acc = acc + mem[C] R1 = R1 + mem[C] R3 = R1 + R2

Lund University / EITF20/ Liang Liu 2015

ISA Classes

24

Accumulator (before 1960):
1-address add A acc acc + mem[A]

Stack (1960s to 1970s):
0-address add tos tos + next

Memory-Memory (1970s to 1980s):
2-address add A, B mem[A] mem[A] + mem[B]

3-address add A, B, C mem[A] mem[B] + mem[C]

Register-Memory (1970s to present, e.g. 80x86):
2-address add R1, A R1 R1 + mem[A]

load R1, A R1 mem[A]

Register-Register (Load/Store) (1960s to present, e.g. MIPS):
3-address add R1, R2, R3 R1 R2 + R3

load R1, R2 R1 mem[R2]

store R1, R2 mem[R1] R2

Lund University / EITF20/ Liang Liu 2015

Evolution of ISA

25

Single Accumulator (EDSAC 1950, Maurice Wilkes)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

Stack Architecture Concept of a Family (RR,RM,MM)

(Burroughs Corporation B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,SUN- Sparc,HP-PA,
IBM RS6000,PowerPC . . .1987)

CISC
Intel x86, Pentium

Lund University / EITF20/ Liang Liu 2015

GPR (General Purpose Register)

26

Registers are much faster than memory (even cache)

• Register values are available “immediately”

• When memory isn’t ready, processor must wait (“stall”)

Registers are convenient for variable storage

• Compiler assigns some variables (especially frequently used

ones) just to registers

• More compact code since small fields specify registers

(compared to memory addresses)

Disadvantages

• Higher instruction count

• Dependent on good compiler (Reg. assignment)

• Higher hardware cost (comparing to MEM)

Lund University / EITF20/ Liang Liu 2015

Register File

Example: 4-word register file with 1 write port and two read ports

27

Register array:

•4*16bit registers

•Each register has an

enable signal

Write decoding circuit:

•0000 if wr_en is 0

•1 bit asserted according

to w_addr if wr_en is 1

Read circuit:

•A mux for each read port

Lund University / EITF20/ Liang Liu 2015

Memory Architecture

28

w
o
rd

 l
in

e

storage

(RAM) cell

selects appropriate word

from memory row

amplifies bit

line swing

Lund University / EITF20/ Liang Liu 2015

Reg v.s. Mem (65nm CMOS)

29

Register Bank Memory

Size 256*4Byte 1K*4Byte

Area 0.14mm2 0.04mm2

Density 7KB/mm2 100KB/mm2

Lund University / EITF20/ Liang Liu 2015

Stack v.s. GPR

30

Advantages

• Very compact object code

• Simple compilers (no reg. assignment)

• Minimal processor state (simple hardware)

Disadvantages

• More memory references (if stack is implemented with MEM)

• Factoring out common subexpressions has high cost

• Can add some registers (hybrid)

Push A

Push B

Add

Load R1,A

Load R2, B

Add R3, R1, R2

X+1

load X, push to memory

load 1, push to memory

pop 2 values from memory, add, and

push result to memory

Lund University / EITF20/ Liang Liu 2015

Memory Addressing

31

A 32 bit (4Byte) integer variable (0x01234567) stored at

address 0x100

• Big Endian

Least significant byte has highest address

• Little Endian

Least significant byte has lowest address

• Important for exchange of data, (and strings)

0x100 0x101 0x102 0x103

01 23 45 6701 23 45 67

0x100 0x101 0x102 0x103

67 45 23 0167 45 23 01

Lund University / EITF20/ Liang Liu 2015

Memory Addressing

32

Memory is generally byte addressed and provides

access for

• bytes (8 bits), half words (16 bits), words (32 bits), and double

words(64 bits)

Access to data-objects > 1 byte?

An architecture may require that data is aligned:

• Adreess index is multiple of date type size (depending on

memory implementation)

• byte always aligned

• half word (16 bits) aligned at byte offsets 0,2,4,6,...

• word (32 bits) aligned at byte offsets 0,4,8,12,...

• double word (64 bits) aligned at byte offsets 0,8,16,24,...

Lund University / EITF20/ Liang Liu 2015

Memory Alignment

33

Lund University / EITF20/ Liang Liu 2015

Memory Alignment

34

Lund University / EITF20/ Liang Liu 2015

Memory Addressing Mode

35

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4 <- R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Auto-increment Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d

9. Auto-decrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +

M[100 + R2 + R3*d]

Lund University / EITF20/ Liang Liu 2015

Memory addressing mode (one VAX)

36

Are all these addressing modes needed?

Lund University / EITF20/ Liang Liu 2015

Memory Addressing Mode

37

How many bits are needed for address displacement?

Lund University / EITF20/ Liang Liu 2015

Memory Addressing Mode

38

How important are immediats?

Lund University / EITF20/ Liang Liu 2015

Memory Addressing Mode

39

How many bits are needed for immediate?

Lund University / EITF20/ Liang Liu 2015

What does it mean?

40

Lund University / EITF20/ Liang Liu 2015

What does it mean?

41

Lund University / EITF20/ Liang Liu 2015

Types and sizes of operands

42

integer

floating point (single precision)

character

packed decimal

... etc ...

Lund University / EITF20/ Liang Liu 2015

Floating point

43

Lund University / EITF20/ Liang Liu 2015

Floating point v.s. fixed point

44

Lund University / EITF20/ Liang Liu 2015

Packed decimal

45

0.1010 0.000110011001100110011…2

Lund University / EITF20/ Liang Liu 2015

Types of operations

46

• Arithmetic and Logic: AND, ADD

• Data Transfer: MOVE, LOAD, STORE

• Control BRANCH, JUMP, CALL

• System OS CALL, VM

• Floating Point ADDF, MULF, DIVF

• Decimal ADDD, CONVERT

• String MOVE, COMPARE, SEARCH

• Graphics (DE)COMPRESS

Lund University / EITF20/ Liang Liu 2015

Types of operations (frequency)

47

Rank Instruction Frequency

1 load 22%

2 branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 register move 4%
9

9 call 1%

10 return 1%

Total 96%

80x86 Instruction Frequency

Lund University / EITF20/ Liang Liu 2015

Types of control instructions

48

Conditional branches

Unconditional branches (jumps)

Procedure call/returns

Lund University / EITF20/ Liang Liu 2015

Types of control instructions

49

How large need the branch displacement be?

Lund University / EITF20/ Liang Liu 2015

Instruction format

50

Variable instruction format

• Compact code but the instruction decoding is more complex

and thus slower

• Examples: VAX, Intel 80x86 (1-17 byte)

Fixed instruction format

• Easy and fast to decode but gives large code size

• Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

51

Lund University / EITF20/ Liang Liu 2015

ISA and compiler

52

Instruction set architecture is a compiler target

By far most instructions executed are generated by a

compiler (exception certain special purpose processors)

Interaction compiler - ISA critical for overall performance

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Architecture Design

Circuit Design

Instruction Set
Architecture

Lund University / EITF20/ Liang Liu 2015

ISA and compiler

53

Lund University / EITF20/ Liang Liu 2015

The role of compilers

54

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $15, 0($2)

lw $16, 4($2)

sw$16, 0($2)

sw$15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Lund University / EITF20/ Liang Liu 2015

The structure of a compiler

55

Compiler

Analysis Synthesis

Any compiler must perform two major tasks

• Analysis of the source program

• Synthesis of a machine-language program

Lund University / EITF20/ Liang Liu 2015

The structure of a compiler

56

Scanner Parser
Semantic

Routines

Code

Generator

Optimizer

Source

Program Tokens Syntactic

Structure

Symbol and

Attribute

Tables

(Used by all Phases of The Compiler)

(Character Stream)

Intermediate

Representation

Target machine code

Lund University / EITF20/ Liang Liu 2015

The structure of a compiler

57

Lund University / EITF20/ Liang Liu 2015

GCC optimization options

58

O0 – No optimizations performed

O1 – Local optimizations such as common
subexpression elimination, copy propagation,
dead-code elimination etc

O2 – Global optimization, aggressive instruction
scheduling, global register allocation

O3 – Inlining of procedures

Lund University / EITF20/ Liang Liu 2015

GCC optimization options (individual opt.)

59

 Four gcc optimizations, all optimizations applied on top -O1

 -fschedule-insns – local register allocation followed by basic-

block list scheduling

 -fschedule-insns2 – Postpass scheduling done

 -finline-functions – Integrated all simple functions into their callers

 -funroll-loops – Perform the optimization of loop unrolling

Lund University / EITF20/ Liang Liu 2015

Example of compiler optimization

60

 Code improvements made by the compiler are called

optimizations and can be classified:

• High-order transformations: procedure inlining

• Optimizations: dead code elimination

• Constant propagation

• Common sub-expression elimination

• Loop-unrolling

• Register allocation (almost most important)

• Machine-dependent optimizations: takes advantage of specific

architectural features

Lund University / EITF20/ Liang Liu 2015

Example of compiler optimization

61

Procedure inlining

Constant propagation

Dead code elimination
Common expression

elimination

Lund University / EITF20/ Liang Liu 2015

Example of compiler optimization

62

 Code improvements made by the compiler are called

optimizations and can be classified:

• High-order transformations: procedure inlining

• Optimizations: dead code elimination

• Constant propagation

• Common sub-expression elimination

• Loop-unrolling

• Register allocation (almost most important)

• Machine-dependent optimizations: takes advantage of specific

architectural features

 Almost all of these optimizations are easier to do if there

are many general registers available!

• E.g., common sub/expression elimination stores temporary value

into a register

• Loop-unrolling

• Procedure inlining

Lund University / EITF20/ Liang Liu 2015

The impact of compiler optimization

63

Lund University / EITF20/ Liang Liu 2015

How can you aid compiler

64

Rules of thumb when designing an instruction set

(for general purpose processor):

• Regularity (operations, data types and addressing modes

should be orthogonal)

• Generality. Provide primitives, not high-level constructs or

solutions. Complex instructions are often too specialized.

• Simplify trade-offs among alternatives

• Provide instructions that bind quantities known at compile

time as constants

Lund University / EITF20/ Liang Liu 2015

Outline

 Reiteration

 Instruction Set Principles

 The Role of Compilers

MIPS

65

Lund University / EITF20/ Liang Liu 2015

The MIPS64 architecture

66

 An architecture representative of modern ISA:

• 64 bit load/store GPR architecture

• 32 general integer registers (R0 = 0) and 32 floating point registers

• Supported data types: bytes, half word (16 bits), word (32 bits),

double word (64 bits), single and double precision IEEE floating

points

• Memory byte addressable with 64 bit addresses

• Addressing modes: immediate and displacement

Lund University / EITF20/ Liang Liu 2015

MIPS instructions

67

MIPS instructions fall into 5 classes:

• Arithmetic/logical/shift/comparison

• Control instructions (branch and jump)

• Load/store

• Other (exception, register movement to/from GP registers,

etc.)

Lund University / EITF20/ Liang Liu 2015

MIPS instruction example

68

Lund University / EITF20/ Liang Liu 2015

MIPS instruction format

69

Lund University / EITF20/ Liang Liu 2015

Summary

70

 The instruction set architecture have importance for the

performance

 The important aspects of an ISA are:

• register model

• addressing modes

• types of operations

• data types

• encoding

 Benchmark measurements can reveal the most common

case

 Interaction compiler - ISA important

