
Lund University / EITF20/ Liang Liu

EITF20: Computer Architecture
Part 6.1.1: Course Summary

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu

ISA: Instruction-set architecture

Computer orgnization: micro architecture

Specific implementation

Computer Architecture

2

Computer architecture is a set of disciplines that

describe the functionality, organization and

implementation of computer systems.

Lund University / EITF20/ Liang Liu

Computer abstraction levels

3

Lund University / EITF20/ Liang Liu4

The art of designing computers is

based on engineering principles

and

quantitative performance evaluation

Lund University / EITF20/ Liang Liu

What computer architecture?

5

Design and analysis

• ISA

• Orgnization (microarchitecture)

• Implementation

To meet requirements of

• Functionality (application, standards…)

• Price

• Performance

• Power

• Reliability

• Dependability

• Compatability

• ..

Lund University / EITF20/ Liang Liu

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

MultiProcessor

6

Lund University / EITF20/ Liang Liu

Performance

8

Lund University / EITF20/ Liang Liu

Aspect of CPU performance

9

Lund University / EITF20/ Liang Liu

Quantitative Principles

10

This is intro to design and analysis

• Take advantage of parallelism

 ILP, DLP, TLP, ...

• Principle of locality

 90% of execution time in only 10% of the code

• Focus on the common case

 In makeing a design trade-off, favor the frequent case ove the

infrequent case

• Amdahl’s Law

 The performance improvement gained from uisng faster mode is

limited by the fraction of the time the faster mode can be used

Lund University / EITF20/ Liang Liu

Amdahl’s Law

11

Lund University / EITF20/ Liang Liu

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

Multiprocessor

12

Lund University / EITF20/ Liang Liu

Interface Design

13

A good interface

• Lasts through many implementations (portability, compatibility)

• Can be used in many different ways (generality)

• Provides sufficient functionality to higher levels

• Permits an efficient implementation at lower levels

Lund University / EITF20/ Liang Liu

ISA Classification

14

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Classification of instruction sets

• Register model

• The number of operands for instructions

• Addressing modes

• The operations provided in the instruction set

• Type and size of operands

• Control flow instructions

• Encoding

Lund University / EITF20/ Liang Liu

ISA Classes: Where are operands stored

15

Lund University / EITF20/ Liang Liu

Memory Addressing Mode

16

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4 <- R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Auto-increment Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d

9. Auto-decrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +

M[100 + R2 + R3*d]

Lund University / EITF20/ Liang Liu

Instruction format

17

Variable instruction format

• Compact code but the instruction decoding is more complex

and thus slower

• Examples: VAX, Intel 80x86 (1-17 byte)

Fixed instruction format

• Easy and fast to decode but gives large code size

• Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC

Lund University / EITF20/ Liang Liu

Example: RISC-CICS

18

MULT 2:3, 5:2 LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock

complex instructions

“Single”-clock,

reduced instruction only

Memory-to-memory:

"LOAD" and "STORE"

incorporated in instructions

Register to register:

"LOAD" and "STORE"

are independent instructions

Small code sizes,

high cycles per second

Low cycles per second,

large code sizes

Irregular Instruction size Regular Instruction size

Lund University / EITF20/ Liang Liu

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

Multiprocessor

20

Lund University / EITF20/ Liang Liu

Pipeline Facts

Time

40 50 50 50 50 20

L
a
u

n
d

rie
s

1

2

3

4

Multiple tasks operating

simultaneously

Pipelining doesn’t help latency

of single task, it helps

throughput of entire workload

Pipeline rate limited by

slowest pipeline stage

Unbalanced lengths of pipe

stages reduces speedup

Potential speedup ∝ Number

of pipe stages

21

Lund University / EITF20/ Liang Liu

One core – the MIPS data-path

22

Lund University / EITF20/ Liang Liu

Dependencies

23

 Data dependent: if

• Instruction i produces a result used by instr. j, or

• Instruction j is data dependent on instruction k and instr. k is data

dependent on instr. i

 Name dependent: two instructions use same name

(register or memory address) but do not exchange data

• Anti-dependence (WAR if hazard in HW)

• Output dependence (WAW if hazard in HW)

Lund University / EITF20/ Liang Liu

Control dependencies

24

 Determines order between an instruction and a branch

instruction

Lund University / EITF20/ Liang Liu

Summary pipeline - method

25

Lund University / EITF20/ Liang Liu

Exception: solution for simple MIPS

26

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

F D X M W

F D X M W

Lund University / EITF20/ Liang Liu

Deeper pipeline

27

 Implications of deeper pipeline

• Load latency: 2 cycles

• Branch latency: 3 cycles (incl. one delay slot)

• Bypassing (forwarding) from more stages

• More instructions “in flight” in pipeline

• Faster clock, larger latencies, more stalls

 Performance equation: CPI ∗ Tc must be lower for the

longer pipeline to make it worthwhile

Instruction memory Reg Data memory Re

g

IF IS R

F

EX DF DS TC W

B

A
L

U

Lund University / EITF20/ Liang Liu

Pipeline

28

Lund University / EITF20/ Liang Liu

Pipeline hazard

29

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in

any of the FP functional units

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?

Lund University / EITF20/ Liang Liu

Compiler optimization

30

Loop unrolling Scheduling

Lund University / EITF20/ Liang Liu

Scoreboard pipeline

31

 Issue: decode and check for structural & WAW hazards

 Read operands: wait until no data hazards, then read operands

 All data hazards are handled by the scoreboard

Lund University / EITF20/ Liang Liu

Scoreboard functionality

32

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR

hazards)

Lund University / EITF20/ Liang Liu

Scoreboard example

33

Lund University / EITF20/ Liang Liu

Tomasulo orgnizations

34

Lund University / EITF20/ Liang Liu

Reservation stations

35

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each

register

• Blank when no pending instructions that will write that register

Lund University / EITF20/ Liang Liu

Three stages of Tomasulo algorithm

36

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

Lund University / EITF20/ Liang Liu

Tomasulo extended to support speculation

37

Lund University / EITF20/ Liang Liu

Summary pipeline - implementation

38

Lund University / EITF20/ Liang Liu

CPU performance equation

39

+ Memory access

+ Communication

Lund University / EITF20/ Liang Liu

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

Multiprocessor

40

Lund University / EITF20/ Liang Liu

Memory tricks (techniques)

41

Lund University / EITF20/ Liang Liu

Levels of memory hierarchy

42

CPU Registers
500 Bytes
0.25 ns
~$.01

Cache
16K-1M Bytes
1 ns
~$10-4

Main Memory
64M-2G Bytes
100ns
~$10-7

Disk
100 G Bytes
5 ms
~$10-7- 10-9

Capacity
Access Time
Cost/bit

Tape/Network
“infinite”
secs.
~$10-10

Registers

L1, L2, … Cache

Memory

Disk

Tape/Network

Words

Blocks

Pages

Files

Staging
Transfer Unit

programmer/compiler
1-8 bytes

cache controller
8-128 bytes

OS
4-64K bytes

user/operator
Mbytes

Upper Level

Lower Level

Faster

Larger

Lund University / EITF20/ Liang Liu

Four memory hierarchy questions

43

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu

Block placement

44

cache

memory

Lund University / EITF20/ Liang Liu

Block identification

45

tag index

Lund University / EITF20/ Liang Liu

Which block should be replaced on a Cache miss?

46

 Direct mapped caches don’t need a block replacement

policy

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)

Lund University / EITF20/ Liang Liu

Cache write (hit)

47

Write through:

• The information is written to both

the block in the cache and to the

block in the lower-level memory

• Is always combined with write

buffers so that the CPU doesn’t

have to wait for the lower level

memory

Write back:

• The information is written only to

the block in the cache

• Copy a modified cache block to

main memory only when replaced

• Is the block clean or modified?

(dirty bit, several write to the same

block)

Write Buffer

Lund University / EITF20/ Liang Liu

Cache performance

48

 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)

Lund University / EITF20/ Liang Liu

Cache optimizations

49

Lund University / EITF20/ Liang Liu

Virtual memory benifits

50

 Using physical memory efficiently

• Allowing more than physical memory addressing

• Enables programs to begin before loading fully

• Programmers used to use overlays and manually

control loading/unloading

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear

address space

 Using physical memory safely

• Virtual memory protests process’ address

spaces

• Processes cannot interfere with each other,

because they operate in different address space

• User processes cannot access priviledged

information

Lund University / EITF20/ Liang Liu

Virtual memory concept

51

 Is part of memory hierarchy

• The virtual address space is divided

into pages (blocks in Cache)

• The physical address space is

divided into page frames

• A miss is called a page fault

• Pages not in main memory are

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping)

mechanism

Lund University / EITF20/ Liang Liu

Page placement

52

Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

 The high miss penalty makes it

• Necessary to minimize miss rate

• Possible to use software solutions to implement a fully associative

address mapping

Lund University / EITF20/ Liang Liu

Page identification: address mapping

53

 4Byte per page table entry

• Page table will have

220*4=222=4MByte

• Generally stored in the main memory

 64 bit virtual address,16 KB

pages:

264/214*4=252=212TByte

 One page table per program

(100 program?)

 Solutions

• Multi–level page table

• Inverted page table

 Contains Real Page

Number

 Miscellaneous control

information

• valid bit,

• dirty bit,

• replacement information,

• access control

Lund University / EITF20/ Liang Liu

Page identification (TLB)

54

 How do we avoid two (or more) memory references for each

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table

walker

Lund University / EITF20/ Liang Liu

Address translation cache and VM

55

Page size = L1 Cache size = 1KB

Directly mapped 256 entries

64B/block

4MB L2 Cache

Lund University / EITF20/ Liang Liu

Summary memory hierarchy

56

Lund University / EITF20/ Liang Liu

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

Multiprocessor

57

Lund University / EITF20/ Liang Liu

Flynn’s Taxonomy

58

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector)

Multiple Instruction Single
Data (MISD)

(????)

Multiple Instruction Multiple
Data MIMD

(Clusters, MP)

Lund University / EITF20/ Liang Liu

Basics

59

Definition: “A parallel computer is a collection of processing

elements that cooperate and communicate to solve large

problems fast.”

Parallel Architecture =

Computer Architecture + Communication Architecture

 Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

 Physically Distributed-Memory multiprocessor

• Larger number chips and cores

• BW demands  Memory distributed among processors

Lund University / EITF20/ Liang Liu

Cache Coherence Problem (example)

60

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

61

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

62

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

No A No A No A
A

S

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

63

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

A

Rd A

Rd A

S

No A No A
A

S

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

64

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

Wr A

A
MI I

Rd A

Wr A

Lund University / EITF20/ Liang Liu

Example Protocol: snooping

65

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

A
MI I

Rd A

Wr A

Rd A

Rd A

S

S

Wr Back

Lund University / EITF20/ Liang Liu

Exercise

66

 7th of Dec, Thursday

 E:B

 Steffen Malkowsky

http://www.eit.lth.se/fileadmin/eit/courses/eitf20/Exercise_2016.pdf

http://www.eit.lth.se/fileadmin/eit/courses/eitf20/OvnMain.pdf

Lund University / EITF20/ Liang Liu

Exam

67

Written exam

• 11th Jan., 14-19,MA 9E/9F, Sölvegatan 20

• No mobile phones

• Pocket calculator

• Basic concept

• Analysis

• Case study

• Calculation

Lund University / EITF20/ Liang Liu

Software-hardware co-design enabling real-

time AI

68

Lund University / EITF20/ Liang Liu

Software-hardware co-design enabling real-

time AI

69

Lund University / EITF20/ Liang Liu70

Thanks and Good Luck!

