
logoonly

Computer Architecture

The Art of designing computers
based on engineering principles

and
quantitative performance evaluations

Architecture:
instruction set architecture
implementation

organization
hardware

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 1 / 45

logoonly

The role of the computer architect

Make design decisions across the interface between hardware and
software in order to meet functional and performance goals.

Applications

System software

. .

Hardware

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 2 / 45

logoonly

What computer architecture?

Designing
ISA
Organization
Hardware

to meet
functional requirements (applications, standards, ...)
price
power
performance
availability
dependability

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 3 / 45

logoonly

Outline

1 Performance

2 ISA

3 Pipeline

4 Memory Hierarchy

5 I/O, RAID, Embedded processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 4 / 45

logoonly

Performance of processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 5 / 45

logoonly

Transistors in a CPU

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 6 / 45

logoonly

Transistors in a CPU

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 7 / 45

logoonly

Metrics of performance

Time to complete a task (Texe)
Execution time, response time, latency

Task per day, hour, second, ... (Performance)
Throughput, bandwidth

Application ⇐= Answers/month
Programming ⇐= Response time (seconds)

language ⇐= Operations/second
Compiler

Instruction set ⇐= MIPS/MFLOPS
Data-path control ⇐= Megabytes/second
Functional units

Transistors, wires, pins ⇐= Cycles per second (clock rate)

MIPS = millions of instructions per second
MFLOPS = millions of FP operations per second

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 8 / 45

logoonly

Quantitative principles

Take advantage of parallelism
Principle of locality
Focus on the common case
Amdahl’s law
Enhancement E accelerates a fraction F of a program by a factor S
Texe(with E) = Texe(without E) ∗ [(1− F) + F/S]

Speedup(E) = Texe(without E)
Texe(with E) = 1

(1−F)+F/S

Processor performance equation
Execution time =

seconds/program =

instr ./program︸ ︷︷ ︸
IC

∗ cycles/instr .︸ ︷︷ ︸
CPI

∗ seconds/cycle︸ ︷︷ ︸
Tc

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 9 / 45

logoonly

Outline

1 Performance

2 ISA

3 Pipeline

4 Memory Hierarchy

5 I/O, RAID, Embedded processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 10 / 45

logoonly

Instruction Set Architecture - ISA

Application

Compiler

ISA

Organization

Implementation

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 11 / 45

logoonly

Instruction Set Architecture (ISA)

ISA (Instruction Set Architecture) is the
interface between software and hardware

A good interface:
Lasts through many implementations (portability, compatibility)
Can be used in many different ways (generality)
Provides sufficient functionality to higher levels
Permits an efficient implementation at lower levels

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 12 / 45

logoonly

RISC - CISC

CPUtime = Tc ∗ CPI ∗ IC
RISC CISC

RISC (Reduced Instruction Set Computing)
simple instructions
MIPS, ARM, ...
easier to design, build
less power
larger code size
easier for compiler

CISC (Complex Instruction Set Computing)
complex instructions
VAX, Intel 80x86 (now RISC-like internally), ...

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 13 / 45

logoonly

Addressing modes

Are all these addressing modes needed?

Register
Immediate
Displacement
Register indirect
Indexed
Direct or absolute
Memory indirect
Auto-increment
Auto-decrement
Scaled

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 14 / 45

logoonly

Instruction formats

A variable instruction format yields compact code but the
instruction decoding is more complex and thus slower
Examples: VAX, Intel 80x86

Operation Address Address ... Address Address
operands specifier 1 field 1 specifier x field x

A fixed instruction format is easy and fast to decode but gives
large code size
Examples: Alpha, ARM, MIPS, PowerPC, SPARC

Operation Address Address Address
field 1 field 2 field 3

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 15 / 45

logoonly

How can you aid the compiler?

Rules of thumb when designing an instruction set:
Regularity (operations, data types and addressing modes should
be orthogonal)
Provide primitives, not high-level constructs or solutions. Complex
instructions are often too specialized.
Simplify trade-offs among alternatives
Provide instructions that bind quantities known at compile time as
constants

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 16 / 45

logoonly

Summary - ISA

The instruction set architecture have importance for the
performance
The important aspects of an ISA are:

register model
addressing modes
types of operations
data types
encoding

Benchmark measurements can reveal the most common case
Interaction compiler - ISA important

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 17 / 45

logoonly

Outline

1 Performance

2 ISA

3 Pipeline

4 Memory Hierarchy

5 I/O, RAID, Embedded processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 18 / 45

logoonly

Pipelining Lessons

Pipelining doesn’t help latency of a single instruction, it helps
throughput of the entire worklo ad
Pipeline rate is limited by the slowest pipeline stage
Multiple instructions are executing simultaneously
Potential speedup = Number of pipe stages

Unbalanced lengths of pipe stages reduces speedup
Time to fill pipeline and time to drain reduces speedup
Hazards reduces speedup

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 19 / 45

logoonly

Summary Pipelining - Methods

Dependencies are properties of the program
Whether a dependency leads to a hazard or not is a property of the
pipeline implementation
Dependency Hazard Method
Data RAW Forwarding, Scheduling
Name WAR, WAW Register Renaming
Control Control Branch Prediction,

Speculation, Delayed branch
Structural More hardware

Precise exceptions in-order commit
ILP Scheduling,

Loop unrolling

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 20 / 45

logoonly

Summary Pipelining - Implementation

Problem Simple Scoreboard Tomasulo Tomasulo +
Speculation

Static Sch Dynamic Scheduling
RAW forwarding wait (Read) CDB CDB

stall stall stall
WAR - wait (Write) Reg. rename Reg. rename
WAW - wait (Issue) Reg. rename Reg. rename
Exceptions precise ? ? precise, ROB
Issue in-order in-order in-order in-order
Execution in-order out-of-order out-of-order out-of-order
Completion in-order out-of-order out-of-order in-order
Structural - many FU many FU, many FU,
hazard stall CDB, stall CDB, stall
Control Delayed Branch Branch Br. pred,
hazard br., stall prediction prediction speculation

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 21 / 45

logoonly

Basic 5 stage pipeline

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 22 / 45

logoonly

Pipeline with several Functional units

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 23 / 45

logoonly

Scoreboard pipeline

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 24 / 45

logoonly

Basic Tomasulo pipeline

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 25 / 45

logoonly

Tomasulo pipeline with speculation

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 26 / 45

logoonly

Outline

1 Performance

2 ISA

3 Pipeline

4 Memory Hierarchy

5 I/O, RAID, Embedded processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 27 / 45

logoonly

Memory Hierarchy Functionality

CPU tries to access memory at address A. If A is in the cache,
deliver it directly to the CPU
If not – transfer a block of memory words, containing A, from the
memory to the cache. Access A in the cache.
If A not present in the memory – transfer a page of memory
blocks, containing A, from disk to the memory, then transfer the
block containing A from memory to cache. Access A in the cache.

words blocks pages

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 28 / 45

logoonly

4 questions for the Memory Hierarchy

Q1: Where can a block be placed in the upper level?
(Block placement)
Q2: How is a block found if it is in the upper level?
(Block identification)
Q3: Which block should be replaced on a miss?
(Block replacement)
Q4: What happens on a write?
(Write strategy)

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 29 / 45

logoonly

Block placement

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 30 / 45

logoonly

Block identification

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 31 / 45

logoonly

Block replacement

Direct mapped caches don’t need a block replacement policy
(why?)
Primary strategies:

Random (easiest to implement)
LRU – Least Recently Used (best)
FIFO – Oldest

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 32 / 45

logoonly

Cache micro-ops sequencing – read

1: Address division
2: Set/block selection
2a: Tag read
3: Tag/Valid bit checking
4: Hit: Data out

Miss: Signal cache miss; initiate replacement

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 33 / 45

logoonly

Cache Performance

CPU execution Time =

IC ∗ (CPIexecution +
mem accesses

instruction
∗miss rate ∗miss penalty) ∗ TC

Three ways to increase performance:
Reduce miss rate
Reduce miss penalty
Reduce hit time (improves TC)

Average memory access time =
hit time + miss rate ∗miss penalty

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 34 / 45

logoonly

Cache optimizations
Hit Band- Miss Miss HW

time width penalty rate complexity
Simple + - 0
Addr. transl. + 1
Way-predict + 1
Trace + 3
Pipelined - + 1
Banked + 1
Nonblocking + + 3
Early start + 2
Merging write + 1
Multilevel + 2
Read priority + 1
Prefetch + + 2-3
Victim + + 2
Compiler + 0
Larger block - + 0
Larger cache - + 1
Associativity - + 1

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 35 / 45

logoonly

Virtual memory – why?
Reasons to use VM:

Replaces overlays
Large address space
Several processes
sharing the same
physical memory
Protection of memory
Relocation

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 36 / 45

logoonly

Virtual memory – concepts

Part of the memory hierarchy:

The virtual address space
is divided into pages
The physical address
space is divided into page
frames
A miss is called a page
fault
Pages not in main memory
are stored on disk

The CPU uses virtual addresses
We need an address translation (memory mapping) mechanism

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 37 / 45

logoonly

VM: Page identification

Use a page table stored in main memory:

Suppose 4 KB pages,
32 bit virtual address,
4 bytes per entry
Page table takes
232

212 ∗ 4 = 222 = 4 Mbyte
64 bit virtual address,
16 KB pages→
264

214 ∗ 4 = 252 = 212TB
Per process

Solutions
Multi–level page table
(Inverted page table)

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 38 / 45

logoonly

Fast address translation

How do we avoid two (or more) memory references for each original
memory reference?

Cache address translations – Translation Lookaside Buffer
(TLB)

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 39 / 45

logoonly

Summary memory hierarchy

Hide CPU - memory performance gap
Memory hierarchy with several levels

Principle of locality
Cache memories:

Fast, small - Close to CPU
Hardware
TLB
CPU performance equation
Average memory access
time
Optimizations

Virtual memory:
Slow, big - Close to disk
Software
TLB
Page-table
Very high miss penalty =⇒
miss rate must be low
Also facilitates: relocation;
memory protection; and
multiprogramming

Same 4 design questions - Different answers

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 40 / 45

logoonly

The memory hierarchy of AMD Opteron

Separate Instr & Data TLB
and Caches
2-level TLBs
L1 TLBs fully associative
L2 TLBs 4 way set associative
Write buffer (and Victim cache)
Way prediction
Line prediction - prefetch
hit under 10 misses
1 MB L2 cache, shared,
16 way set associative,
write back

(HP fig 5.19) (complex - no details)

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 41 / 45

logoonly

Outline

1 Performance

2 ISA

3 Pipeline

4 Memory Hierarchy

5 I/O, RAID, Embedded processors

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 42 / 45

logoonly

RAID types

Failures Overhead 8
RAID level tolerated data disks comment

0 striped 0 0 JBOD, common
1 mirrored 1-8 8 high overhead
2 ECC 1 4 not used
3 bit parity 1 1 synchronized drives
4 block parity 1 1
5 block parity 1 1 common

distributed
6 row-diagonal 2 2 high availability

dual parity
01 mirrored stripes 1-8 8
10 striped mirrors 1-8 8

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 43 / 45

logoonly

Summary I/O

I/O:
I/O performance is
important!
The task of the I/O system
designer:

meet performance needs
cost-effective
reliability, availability

I/O system parts
CPU interface
Interconnect technology
Device performance

Disks:
Disks have moving parts
leading to long service
times
RAID disk arrays provide
high bandwidth, high
capacity disk storage at
a reasonable cost
SSD is faster and more
expensive

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 44 / 45

logoonly

Embedded processors

Important, found everywhere, high volume
General purpose, application specific, single purpose
Design of hardware and software together
Cover several areas

microelectronics
real time
software + hardware
SoC

A. Ardö, EIT Summary: EITF20 Computer Architecture December 11, 2014 45 / 45

