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The art of designing computers is 

based on engineering principles 

and 

quantitative performance evaluation
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ISA: Instruction-set architecture

Computer orgnization: micro architecture

Specific implementation

Computer Architecture

3

Computer architecture is a set of disciplines that 

describe the functionality, organization and 

implementation of computer systems.
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Computer abstraction levels
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What computer architecture?
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Design and analysis

• ISA

• Orgnization (microarchitecture)

• Implementation

To meet requirements of 

• Functionality (application, standards…)

• Price

• Performance

• Power

• Reliability

• Dependability

• Compatability

• ..
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Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, MultiProcessor
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What is Performance?

7

Time to complete a task (Texe)

• Execution time, response time, latency

Task per day, hour…

• Total amount of tasks for given time

• Thoughput, bandwidth

Speed of Concorde vs Boeing 747

Throughput of Boeing 747 vs Concorde
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Performance
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Aspect of CPU performance
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Quantitative Principles
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This is intro to design and analysis

• Take advantage of parallelism

 ILP, DLP, TLP, ...

• Principle of locality

 90% of execution time in only 10% of the code

• Focus on the common case

 In makeing a design trade-off, favor the frequent case ove the 

infrequent case

• Amdahl’s Law

 The performance improvement gained from uisng faster mode is 

limited by the fraction of the time the faster mode can be used
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Amdahl’s Law
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Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System
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Interface Design
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A good interface 

• Lasts through many implementations (portability, compatibility)

• Can be used in many different ways (generality)

• Provides sufficient functionality to higher levels

• Permits an efficient implementation at lower levels

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements 

Machine language code: architecture specific bit patterns 

software

compiler

assembler
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ISA Classification

14

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Classification of instruction sets

• Register model

• The number of operands for instructions

• Addressing modes

• The operations provided in the instruction set

• Type and size of operands

• Control flow instructions

• Encoding
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ISA Classes: Where are operands stored

15
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Memory  Addressing Mode

16

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4 <- R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Auto-increment Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d

9. Auto-decrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 + 

M[100 + R2 + R3*d]
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Instruction format

17

Variable instruction format 

• Compact code but the instruction decoding is more complex 

and thus slower 

• Examples: VAX, Intel 80x86 (1-17 byte)

Fixed instruction format 

• Easy and fast to decode but gives large code size

• Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC
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Example: RISC-CICS

18

MULT 2:3, 5:2 LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock

complex instructions

“Single”-clock,

reduced instruction only

Memory-to-memory:

"LOAD" and "STORE"

incorporated in instructions

Register to register:

"LOAD" and "STORE"

are independent instructions

Small code sizes,

high cycles per second

Low cycles per second,

large code sizes

Irregular Instruction size Regular Instruction size
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Example: RISC-CICS

19

RISC (Reduced Instruction Set Computing)

• Simple instructions

• MIPS, ARM, ...

• Easier to design, build

• Less power, in normal voltage supply

• Larger code size (IC)

• Easier for compiler

CISC (Complex Instruction Set Computing)

• Complex instructions

• VAX, Intel 80x86 (now RISC-like internally), ...
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Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System
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Pipeline Facts
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Multiple tasks operating 

simultaneously

Pipelining doesn’t help latency

of single task, it helps 

throughput of entire workload

Pipeline rate limited by 

slowest pipeline stage

Unbalanced lengths of pipe 

stages reduces speedup

Potential speedup ∝ Number 

of pipe stages

21
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One core – the MIPS data-path

22
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Dependencies

23

 Data dependent: if

• Instruction i produces a result used by instr. j, or

• Instruction j is data dependent on instruction k and instr. k is data 

dependent on instr. i

 Name dependent: two instructions use same name 

(register or memory address) but do not exchange data

• Anti-dependence (WAR if hazard in HW)

• Output dependence (WAW if hazard in HW)
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Control dependencies

24

 Determines order between an instruction and a branch 

instruction
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Summary pipeline - method

25
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Exception: solution for simple MIPS

26
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Deeper pipeline

27

 Implications of deeper pipeline

• Load latency: 2 cycles

• Branch latency: 3 cycles (incl. one delay slot) 

• Bypassing (forwarding) from more stages

• More instructions “in flight” in pipeline

• Faster clock, larger latencies, more stalls

 Performance equation: CPI ∗ Tc must be lower for the 

longer pipeline to make it worthwhile

Instruction memory Reg Data memory Re

g

IF IS R

F

EX DF DS TC W

B

A
L

U
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Pipeline

28
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Pipeline hazard

29

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in 

any of the FP functional units

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before 

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?
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Compiler optimization

30

Loop unrolling Scheduling
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Scoreboard pipeline

31

 Issue: decode and check for structural & WAW hazards

 Read operands: wait until no data hazards, then read operands

 All data hazards are handled by the scoreboard
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Scoreboard functionality

32

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of 

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR 

hazards)
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Scoreboard example

33
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Tomasulo orgnizations

34
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Reservation stations

35

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source 

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each 

register

• Blank when no pending instructions that will write that register 
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Three stages of Tomasulo algorithm

36

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point 

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available
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Tomasulo extended to support speculation

37
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Summary pipeline - implementation

38
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CPU performance equation

39

+ Memory access

+ Communication 
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Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System
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Memory tricks (techniques)

41
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Levels of memory hierarchy
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CPU Registers
500 Bytes
0.25 ns
~$.01

Cache
16K-1M Bytes
1 ns
~$10-4

Main Memory
64M-2G Bytes
100ns
~$10-7

Disk
100 G Bytes
5 ms
~$10-7- 10-9

Capacity
Access Time
Cost/bit

Tape/Network
“infinite”
secs.
~$10-10

Registers

L1, L2, … Cache

Memory

Disk

Tape/Network

Words

Blocks

Pages

Files

Staging
Transfer Unit

programmer/compiler
1-8 bytes

cache controller
8-128 bytes

OS
4-64K bytes

user/operator
Mbytes

Upper Level

Lower Level

Faster

Larger
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Four memory hierarchy questions

43

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)
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Block placement

44

cache

memory
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Block identification

45

tag index
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Which block should be replaced on a Cache miss?

46

 Direct mapped caches don’t need a block replacement 

policy 

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)
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Cache write (hit) 

47

Write through: 

• The information is written to both 

the block in the cache and to the 

block in the lower-level memory

• Is always combined with write 

buffers so that the CPU doesn’t 

have to wait for the lower level 

memory

Write back: 

• The information is written only to 

the block in the cache

• Copy a modified cache block to 

main memory only when replaced

• Is the block clean or modified? 

(dirty bit, several write to the same 

block)

Write Buffer
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Cache performance

48

 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)
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Cache optimizations

49
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Virtual memory benifits

50

 Using physical memory efficiently

• Allowing more than physical memory addressing

• Enables programs to begin before loading fully

• Programmers used to use overlays and manually 

control loading/unloading

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear 

address space

 Using physical memory safely

• Virtual memory protests process’ address 

spaces

• Processes cannot interfere with each other, 

because they operate in different address space

• User processes cannot access priviledged

information
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Virtual memory concept

51

 Is part of memory hierarchy

• The virtual address space is divided 

into pages (blocks in Cache)

• The physical address space is 

divided into page frames

• A miss is called a page fault

• Pages not in main memory are 

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping) 

mechanism
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Page placement

52

Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

 The high miss penalty makes it

• Necessary to minimize miss rate

• Possible to use software solutions to implement a fully associative 

address mapping
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Page identification: address mapping

53

 4Byte per page table entry 

• Page table will have

220*4=222=4MByte

• Generally stored in the main memory

 64 bit virtual address,16 KB 

pages:

264/214*4=252=212TByte

 One page table per program 

(100 program?)

 Solutions

• Multi–level page table

• Inverted page table

 Contains Real Page 

Number

 Miscellaneous control 

information 

• valid bit, 

• dirty bit, 

• replacement information,

• access control
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Page identification (TLB)

54

 How do we avoid two (or more) memory references for each 

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table 

walker
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Address translation cache and VM

55

Page size = L1 Cache size = 1KB

Directly mapped 256 entries

64B/block

4MB L2 Cache
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Summary memory hierarchy

56
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Exam
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Written exam

• 14th Jan., 08-13

• Eden 022, 026, Paradisgatan 5, Hus H

• No mobile phones/Pocket calculator 
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Thanks and Good Luck!


