
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part 6.1.1: Course Summary

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 20162

The art of designing computers is

based on engineering principles

and

quantitative performance evaluation

Lund University / EITF20/ Liang Liu 2016

ISA: Instruction-set architecture

Computer orgnization: micro architecture

Specific implementation

Computer Architecture

3

Computer architecture is a set of disciplines that

describe the functionality, organization and

implementation of computer systems.

Lund University / EITF20/ Liang Liu 2016

Computer abstraction levels

4

Lund University / EITF20/ Liang Liu 2016

What computer architecture?

5

Design and analysis

• ISA

• Orgnization (microarchitecture)

• Implementation

To meet requirements of

• Functionality (application, standards…)

• Price

• Performance

• Power

• Reliability

• Dependability

• Compatability

• ..

Lund University / EITF20/ Liang Liu 2016

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, MultiProcessor

6

Lund University / EITF20/ Liang Liu 2016

What is Performance?

7

Time to complete a task (Texe)

• Execution time, response time, latency

Task per day, hour…

• Total amount of tasks for given time

• Thoughput, bandwidth

Speed of Concorde vs Boeing 747

Throughput of Boeing 747 vs Concorde

Lund University / EITF20/ Liang Liu 2016

Performance

8

Lund University / EITF20/ Liang Liu 2016

Aspect of CPU performance

9

Lund University / EITF20/ Liang Liu 2016

Quantitative Principles

10

This is intro to design and analysis

• Take advantage of parallelism

 ILP, DLP, TLP, ...

• Principle of locality

 90% of execution time in only 10% of the code

• Focus on the common case

 In makeing a design trade-off, favor the frequent case ove the

infrequent case

• Amdahl’s Law

 The performance improvement gained from uisng faster mode is

limited by the fraction of the time the faster mode can be used

Lund University / EITF20/ Liang Liu 2016

Amdahl’s Law

11

Lund University / EITF20/ Liang Liu 2016

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System

12

Lund University / EITF20/ Liang Liu 2016

Interface Design

13

A good interface

• Lasts through many implementations (portability, compatibility)

• Can be used in many different ways (generality)

• Provides sufficient functionality to higher levels

• Permits an efficient implementation at lower levels

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

Lund University / EITF20/ Liang Liu 2016

ISA Classification

14

What’s needed in an instruction set?

• Addressing

• Operands

• Operations

• Control Flow

Classification of instruction sets

• Register model

• The number of operands for instructions

• Addressing modes

• The operations provided in the instruction set

• Type and size of operands

• Control flow instructions

• Encoding

Lund University / EITF20/ Liang Liu 2016

ISA Classes: Where are operands stored

15

Lund University / EITF20/ Liang Liu 2016

Memory Addressing Mode

16

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4 <- R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Auto-increment Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d

9. Auto-decrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +

M[100 + R2 + R3*d]

Lund University / EITF20/ Liang Liu 2016

Instruction format

17

Variable instruction format

• Compact code but the instruction decoding is more complex

and thus slower

• Examples: VAX, Intel 80x86 (1-17 byte)

Fixed instruction format

• Easy and fast to decode but gives large code size

• Examples: Alpha, ARM, MIPS (4byte), PowerPC, SPARC

Lund University / EITF20/ Liang Liu 2016

Example: RISC-CICS

18

MULT 2:3, 5:2 LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock

complex instructions

“Single”-clock,

reduced instruction only

Memory-to-memory:

"LOAD" and "STORE"

incorporated in instructions

Register to register:

"LOAD" and "STORE"

are independent instructions

Small code sizes,

high cycles per second

Low cycles per second,

large code sizes

Irregular Instruction size Regular Instruction size

Lund University / EITF20/ Liang Liu 2016

Example: RISC-CICS

19

RISC (Reduced Instruction Set Computing)

• Simple instructions

• MIPS, ARM, ...

• Easier to design, build

• Less power, in normal voltage supply

• Larger code size (IC)

• Easier for compiler

CISC (Complex Instruction Set Computing)

• Complex instructions

• VAX, Intel 80x86 (now RISC-like internally), ...

Lund University / EITF20/ Liang Liu 2016

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System

20

Lund University / EITF20/ Liang Liu 2016

Pipeline Facts

Time

40 50 50 50 50 20

L
a
u

n
d

rie
s

1

2

3

4

Multiple tasks operating

simultaneously

Pipelining doesn’t help latency

of single task, it helps

throughput of entire workload

Pipeline rate limited by

slowest pipeline stage

Unbalanced lengths of pipe

stages reduces speedup

Potential speedup ∝ Number

of pipe stages

21

Lund University / EITF20/ Liang Liu 2016

One core – the MIPS data-path

22

Lund University / EITF20/ Liang Liu 2016

Dependencies

23

 Data dependent: if

• Instruction i produces a result used by instr. j, or

• Instruction j is data dependent on instruction k and instr. k is data

dependent on instr. i

 Name dependent: two instructions use same name

(register or memory address) but do not exchange data

• Anti-dependence (WAR if hazard in HW)

• Output dependence (WAW if hazard in HW)

Lund University / EITF20/ Liang Liu 2016

Control dependencies

24

 Determines order between an instruction and a branch

instruction

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - method

25

Lund University / EITF20/ Liang Liu 2016

Exception: solution for simple MIPS

26

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchrono
us

Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

F D X M W

F D X M W

Lund University / EITF20/ Liang Liu 2016

Deeper pipeline

27

 Implications of deeper pipeline

• Load latency: 2 cycles

• Branch latency: 3 cycles (incl. one delay slot)

• Bypassing (forwarding) from more stages

• More instructions “in flight” in pipeline

• Faster clock, larger latencies, more stalls

 Performance equation: CPI ∗ Tc must be lower for the

longer pipeline to make it worthwhile

Instruction memory Reg Data memory Re

g

IF IS R

F

EX DF DS TC W

B

A
L

U

Lund University / EITF20/ Liang Liu 2016

Pipeline

28

Lund University / EITF20/ Liang Liu 2016

Pipeline hazard

29

RAW hazards:

• Normal bypassing from MEM and WB stages

• Stall in ID stage if any of the source operands is destination operand in

any of the FP functional units

WAR hazards?

• There are no WAR-hazards since the operands are read (in ID) before

the EX-stages in the pipeline

WAW hazard

• SUB finishes before DIV which will overwrite the result from SUB!

• are eliminated by stalling SUB until DIV reaches MEM stage

• When WAW hazard is a problem?

Lund University / EITF20/ Liang Liu 2016

Compiler optimization

30

Loop unrolling Scheduling

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

31

 Issue: decode and check for structural & WAW hazards

 Read operands: wait until no data hazards, then read operands

 All data hazards are handled by the scoreboard

Lund University / EITF20/ Liang Liu 2016

Scoreboard functionality

32

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR

hazards)

Lund University / EITF20/ Liang Liu 2016

Scoreboard example

33

Lund University / EITF20/ Liang Liu 2016

Tomasulo orgnizations

34

Lund University / EITF20/ Liang Liu 2016

Reservation stations

35

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each

register

• Blank when no pending instructions that will write that register

Lund University / EITF20/ Liang Liu 2016

Three stages of Tomasulo algorithm

36

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

Lund University / EITF20/ Liang Liu 2016

Tomasulo extended to support speculation

37

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - implementation

38

Lund University / EITF20/ Liang Liu 2016

CPU performance equation

39

+ Memory access

+ Communication

Lund University / EITF20/ Liang Liu 2016

Outline

 Performance

 ISA

 Pipeline

Memory Hierarchy

 I/O, Storage System

40

Lund University / EITF20/ Liang Liu 2016

Memory tricks (techniques)

41

Lund University / EITF20/ Liang Liu 2016

Levels of memory hierarchy

42

CPU Registers
500 Bytes
0.25 ns
~$.01

Cache
16K-1M Bytes
1 ns
~$10-4

Main Memory
64M-2G Bytes
100ns
~$10-7

Disk
100 G Bytes
5 ms
~$10-7- 10-9

Capacity
Access Time
Cost/bit

Tape/Network
“infinite”
secs.
~$10-10

Registers

L1, L2, … Cache

Memory

Disk

Tape/Network

Words

Blocks

Pages

Files

Staging
Transfer Unit

programmer/compiler
1-8 bytes

cache controller
8-128 bytes

OS
4-64K bytes

user/operator
Mbytes

Upper Level

Lower Level

Faster

Larger

Lund University / EITF20/ Liang Liu 2016

Four memory hierarchy questions

43

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu 2016

Block placement

44

cache

memory

Lund University / EITF20/ Liang Liu 2016

Block identification

45

tag index

Lund University / EITF20/ Liang Liu 2016

Which block should be replaced on a Cache miss?

46

 Direct mapped caches don’t need a block replacement

policy

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)

Lund University / EITF20/ Liang Liu 2016

Cache write (hit)

47

Write through:

• The information is written to both

the block in the cache and to the

block in the lower-level memory

• Is always combined with write

buffers so that the CPU doesn’t

have to wait for the lower level

memory

Write back:

• The information is written only to

the block in the cache

• Copy a modified cache block to

main memory only when replaced

• Is the block clean or modified?

(dirty bit, several write to the same

block)

Write Buffer

Lund University / EITF20/ Liang Liu 2016

Cache performance

48

 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)

Lund University / EITF20/ Liang Liu 2016

Cache optimizations

49

Lund University / EITF20/ Liang Liu 2016

Virtual memory benifits

50

 Using physical memory efficiently

• Allowing more than physical memory addressing

• Enables programs to begin before loading fully

• Programmers used to use overlays and manually

control loading/unloading

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear

address space

 Using physical memory safely

• Virtual memory protests process’ address

spaces

• Processes cannot interfere with each other,

because they operate in different address space

• User processes cannot access priviledged

information

Lund University / EITF20/ Liang Liu 2016

Virtual memory concept

51

 Is part of memory hierarchy

• The virtual address space is divided

into pages (blocks in Cache)

• The physical address space is

divided into page frames

• A miss is called a page fault

• Pages not in main memory are

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping)

mechanism

Lund University / EITF20/ Liang Liu 2016

Page placement

52

Where can a page be placed in main memory?

• Cache access: ∼ ns

• Memory access: ∼ 100 ns

• Disk access: ∼ 10, 000, 000 ns

 The high miss penalty makes it

• Necessary to minimize miss rate

• Possible to use software solutions to implement a fully associative

address mapping

Lund University / EITF20/ Liang Liu 2016

Page identification: address mapping

53

 4Byte per page table entry

• Page table will have

220*4=222=4MByte

• Generally stored in the main memory

 64 bit virtual address,16 KB

pages:

264/214*4=252=212TByte

 One page table per program

(100 program?)

 Solutions

• Multi–level page table

• Inverted page table

 Contains Real Page

Number

 Miscellaneous control

information

• valid bit,

• dirty bit,

• replacement information,

• access control

Lund University / EITF20/ Liang Liu 2016

Page identification (TLB)

54

 How do we avoid two (or more) memory references for each

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table

walker

Lund University / EITF20/ Liang Liu 2016

Address translation cache and VM

55

Page size = L1 Cache size = 1KB

Directly mapped 256 entries

64B/block

4MB L2 Cache

Lund University / EITF20/ Liang Liu 2016

Summary memory hierarchy

56

Lund University / EITF20/ Liang Liu 2016

Exam

59

Written exam

• 14th Jan., 08-13

• Eden 022, 026, Paradisgatan 5, Hus H

• No mobile phones/Pocket calculator

Lund University / EITF20/ Liang Liu 201660

Thanks and Good Luck!

