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Virtual memory benifits
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 Using physical memory efficiently

• Allowing software to address more than physical memory

• Enables programs to begin before loading fully (some 

implementations)

• Programmers used to use overlays and manually control 

loading/unloading (if the program size is larger than mem size)

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

 Using physical memory safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other, because they operate in 

different address space (or limited mem space)

• User processes cannot access priviledged information
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Virtual memory concept
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 Is part of memory hierarchy

• The virtual address space is divided 

into pages (blocks in Cache)

• The physical address space is 

divided into page frames

• A miss is called a page fault

• Pages not in main memory are 

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping) 

mechanism
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Page identification: address mapping
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 4Byte per page table entry 

 Page table will have

220*4=222=4MByte

 64 bit virtual address,16 KB 

pages →

264/214*4=252=212TByte

 Solutions

• Multi–level page table

• Inverted page table
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Multi-level PT
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Page identification
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 How do we avoid two (or more) memory references for each 

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table 

walker
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Summary memory hierarchy
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Take a step back
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 So far

• Performance, Quantitative principles

• Instruction set architectures, ISA

• Pipelining, ILP

• Memory systems, cache, virtual memory

 Coming

• I/O, MultiProcessor

• Course summary
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Computer function and component
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Chip-set architecture
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Who cares about I/O?
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 CPU performance increases dramatically

 I/O system performance limited by mechanical delays 

⇒ less than 10% performance improvement per year

 Amdahl’s law: system speedup limited by the slowest 

component:

• Assume 10% I/O

• CPU speedup = 10 ⇒ System speedup = 5

• CPU speedup = 100 ⇒ System speedup = 10

 I/O will more and more become a bottleneck!

 
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Synchronous/Asynchronous I/O
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 Synchronous I/O

• Request data

• Wait for data

• Use data

 Asynchronous I/O

• Request data

• Continue with other things

• Block when trying to use data

• Compare non-blocking caches in out-of-order CPUs

• Multiple outstanding I/O requests
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I/O technologies
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 The techniques for I/O have evolved (and sometimes 

unevolved): 

• Direct control: CPU controls device by reading/writing data lines 

directly 

• Polled I/O: CPU communicates with hardware via built-in 

controller; busy-waits (sampling) for completion of commands

• Driven I/O: CPU issues command to device, gets interrupt on 

completion 

• Direct memory access: CPU commands device, which transfers 

data directly to/from main memory (DMA controller may be 

separate module, or on device). 

• I/O channels: device has specialized processor, interpreting main 

CPU only when it is truly necessary. CPU asks device to execute 

entire I/O program
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Bus-based interconnect
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 Buses are the number one technology to connect the 

CPU with memory and I/O subsystems

• Advantages: Low cost, shared medium to connect a variety of 

devices; standard, flexible, expandable

• Disadvantages: Inherent problem – limited bandwidth; Bandwidth 

is limited by bus length and number of devices
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Single bus vs multiple bus
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Single Bus

 Lots of devices on one bus leads to: 

• Propagation delays; clock skew (100MHz) 

• Long data paths mean that co-ordination of bus use can adversely 

affect performance 

• Bus may become bottleneck if aggregate data transfer approaches 

bus capacity 

Most systems use multiple buses to overcome these 

problems 
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Single bus vs multiple bus
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Multiple Bus

• Allows system to support wide variety of I/O devices 

• Insulates memory-to-process traffic from I/O traffic 
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Example: Intel
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Example: ARM
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Buses
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SATA revision 3.2 (16 Gbit/s, 1969 MB/s)

USB 3.1 Gen2 (10Gbit/s)

PCIe 4.0 (15.7Gbit/s/lane, 252Gbit/s for 16X)

10GBASE-PR 10 Gbit/s
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Direct memory access (DMA)
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 DMA is a feature of computer systems that allows 

certain hardware subsystems to access main system 

(RAM) memory independently of the CPU

Processor Main Memory

Disk

Printer Keyboard
DMA 

Controller

Disk
Network 

Interface

Disk/DMA 

Controller
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DMA: operation
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 Data transfer between I/O and memory

• Data transfer preparation
 DMA Address Register contains the memory address, Word Count Register

 Commands specify transfer options, DMA transfer mode, the direction

• Control grant
 DMA sends a Bus Request (setting BR to 1)

 When it is ready to grant this request, the CPU sets it’s Bus grant signal, BG to 1

• Data transfer modes
 Bust mode/Cycle stealing mode/Transparent mode 
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Uniprocessor Performance (Crossroads)
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Why Parallel Computing
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 Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

Main Goal

• Improve performance (Execution time or task throughput)

• Execution time of a program governed by Amdahl’s Law

 Other Goals

• Improve cost efficiency and scalability, reduce complexity

Harder to design a single unit that performs as well as N simpler 

units 

• Improve dependability: Redundant execution in space

• Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

Why? 
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Power Dissipation
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Types of Parallelism and How to Exploit Them
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 Instruction Level Parallelism

• Different instructions within a stream can be executed in parallel

• Pipelining, out-of-order execution, speculative execution, VLIW

 Data Parallelism

• Different pieces of data can be operated on in parallel

• SIMD: Vector processing, array processing

• Systolic arrays, streaming processors

 Task Level Parallelism

• Different “tasks/threads” can be executed in parallel

• Multithreading

• Multiprocessing (multi-core)
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Flynn’s Taxonomy
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Single Instruction Single 
Data (SISD)

(Uniprocessor)

Single Instruction Multiple 
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single 
Data (MISD)

(????)

Multiple Instruction Multiple 
Data MIMD

(Clusters, SMP servers)
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Basics
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Definition: “A parallel computer is a collection of processing 

elements that cooperate and communicate to solve large 

problems fast.”

Parallel Architecture = 

Computer Architecture + Communication Architecture

 Centralized Memory Multiprocessor 

• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

 Physically Distributed-Memory multiprocessor

• Larger number chips and cores

• BW demands  Memory distributed among processors
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Multiprocessor Types
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 Tightly coupled multiprocessors

• Shared global memory address space

• Traditional multiprocessing: symmetric multiprocessing (SMP)

• Existing multi-core processors, multithreaded processors

• Programming model similar to uniprocessors (i.e., multitasking 

uniprocessor) except

Operations on shared data require synchronization

P1

$

Interconnection network

$

Pn

Mem Mem
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Multiprocessor Types

34

 Loosely coupled multiprocessors

• No shared global memory address space

• Usually programmed via message passing

 Explicit calls (send, receive) for communication

• Pro: Cost-effective way to scale Memory bandwidth 

 If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more complex

• Con: Must change software to take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem
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Speed Up (example)

36

a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation is 1 cycle, no communication cost, 

each op can be executed in a different processor

 How fast is this with a single processor?

• Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors? 
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Speed Up (example)

37

Single Processor (11 clk)
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Speed Up (example)
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3 Processors (5 clk, with 2.2x speed up)
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Speed Up (example)

39

Optimize for uniprocessor

R= a4x4 + a3x3 + a2x2 + a1x + a0

R= (((a4x + a3)x + a2)x + a1)x + a0

• 8 clk for uniprocessor

• Speed up 8/5=1.6

• What if communication is not free
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Challenges of Parallel Processing

40

First challenge is % of program inherently sequential

Suppose 80X speedup from 100 processors. What 

fraction of original program can be sequential?

a. 10%

b. 5%

c. 1%

d. <1%
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Amdahl’s Law Answers

41
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Challenges of Parallel Processing
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Second challenge is long latency to remote memory

Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all 

local accesses hit memory hierarchy and base CPI is 

0.5. (Remote access = 200/0.5 = 400 clock cycles.) 

What is performance impact if 0.2% instructions 

involve remote access?

a. 1.5X

b. 2.0X

c. 2.5X
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CPI Equation
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CPI = Base CPI + 

Remote request rate x Remote request cost

CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication is 1.3/0.5 or 2.6 faster than 0.2% 

instructions involving local access
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Challenges of Parallel Processing

44

 Synchronization: Operations manipulating shared data 

cannot be parallelized

• Communication: Tasks may need values from each other

 Load Imbalance: Parallel tasks may have different lengths

• Due to imperfect parallelization or micro-architectural effects

• Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware 

resources, delaying each other

• Replicating all resources (e.g., memory) expensive

• Additional latency not present when each task runs alone
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Challenges of Parallel Processing

45

 Application parallelism  primarily via new algorithms that 

have better parallel performance

 Long remote latency impact  both by architect and by the 

programmer 

• For example, reduce frequency of remote accesses either by 

• Caching shared data (HW) 

• Restructuring the data layout to make more accesses local (SW)

 Today’s lecture on HW  to help latency via caches
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Symmetric Shared-Memory Architectures
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 Caches both

• Private data are used by a single processor

• Shared data are used by multiple processors

 Caching shared data 

 reduces latency to shared data, memory bandwidth for 

shared data, and interconnect bandwidth

 cache coherence problem
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Cache Coherence Problem (example)

47

 Processors see different values for u after event 3

 With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when

 Write through caches? 

 Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7
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Example (a bit more complicated)
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 Intuition not guaranteed by coherence

 We might expect memory to respect order between accesses 

to different locations issued by a given process

• to preserve orders among accesses to same location by different 

processes

 Coherence is not enough!

• pertains only to a single location

• i.e., guarantee a MEM write can be seen by all processors but do NOT

constrain when the write will happen

P1 P2

/*Assume initial value of A and  flag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;
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Intuitive Memory Model
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 Reading an address should return the last value written to 

that address 

 Too vague and simplistic; 2 issues

• Coherence defines values returned by a read

• Consistency determines when a written value will be returned by a 

read

 Coherence defines behavior to same location, Consistency

defines behavior to other locations
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Write Consistency
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For now assume

 A write does not complete (and allow the next write to 

occur) until all processors have seen the effect of that write

 The processor does not change the order of any write with 

respect to any other memory access

• if a processor writes location A followed by location B, any 

processor that sees the new value of B must also see the new value 

of A 

 These restrictions allow the processor to reorder reads, but 

forces the processor to finish writes in program order
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Basic Schemes for Enforcing Coherence
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 Program on multiple processors will normally have copies 

of the same data in several caches

 Rather than trying to avoid sharing in SW, 

SMPs use a HW protocol to maintain coherent caches

• Migration and Replication key to performance of shared data

 Migration - data can be moved to a local cache and used 

there in a transparent fashion 

• Reduces both latency to access shared data that is allocated 

remotely and bandwidth demand on the shared memory

 Replication – for shared data being simultaneously read, 

since caches make a copy of data in local cache

• Reduces both latency of access and contention for read shared 

data
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2 Classes of Cache Coherence Protocols
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 Directory based — Sharing status of a block of physical 

memory is kept in just one location, the directory

 Snooping — Every cache with a copy of data also has a 

copy of sharing status of block, but no centralized state is 

kept

• All caches are accessible via some broadcast medium (a bus or 

switch) 

• All cache controllers monitor or snoop on the medium to determine 

whether or not they have a copy of a block that is requested on a 

bus or switch access
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Snoopy Cache-Coherence Protocols
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 Cache Controller “snoops” all transactions on the shared 

medium (bus or switch)

• relevant transaction if for a block it contains

• take action to ensure coherence

• invalidate, update, or supply value

 Depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or 

update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate
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 Must invalidate before step 3

 Write update uses more broadcast medium BW

 all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7
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Architectural Building Blocks

56

 Cache block state transition diagram

• FSM specifying how disposition of block changes: invalid, valid, 

dirty

 Broadcast Medium Transactions (e.g., bus)

 Broadcast medium enforces serialization of read or write 

accesses  Write serialization

• 1st processor to get medium invalidates others copies

• Implies cannot complete write until it obtains bus

• All coherence schemes require serializing accesses to same cache 

block

 Also need to find up-to-date copy of cache block
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Locate up-to-date copy of data
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 Write-through: get up-to-date copy from memory

• Write through simpler if enough memory BW

 Write-back harder

• Most recent copy can be in a cache

 Can use same snooping mechanism

• Snoop every address placed on the bus

• If a processor has dirty copy of requested cache block, it provides it 

in response to a read request and aborts the memory access

• Complexity from retrieving cache block from a processor cache, 

which can take longer than retrieving it from memory 

 Write-back needs lower memory bandwidth 
 Support larger numbers of faster processors 

 Most multiprocessors use write-back
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Cache Resources for WB Snooping

58

 Normal cache tags can be used  for snooping

• Valid bit per block makes invalidation easy

 Read misses easy since rely on snooping

 Writes  Need to know if know whether any other copies of 

the block are cached

• No other copies  No need to place write on bus for WB

• Other copies  Need to place invalidate on bus

 To track whether a cache block is shared, add extra state bit 

associated with each cache block, like valid bit and dirty bit

1. Write to Shared block  Need to place invalidate on bus and mark

cache block as private (if an option)

2. No further invalidations will be sent for that block

3. This processor called owner of cache block

4. Owner then changes state from shared to unshared (or exclusive)
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Example Write Back Snoopy Protocol
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 Invalidation protocol, write-back cache

• Snoops every address on bus

• If it has a dirty copy of requested block, provides that block in 

response to the read request and aborts the memory access

 Each memory block is in one state:

• Clean in all caches and up-to-date in memory (Shared)

• OR Dirty in exactly one cache (Exclusive)

• OR Not in any caches

 Each cache block is in one state (track these):

• Shared : block can be read

• OR Exclusive : cache has only copy, its writeable, and dirty

• OR Invalid : block contains no data (in uniprocessor cache too)

 Read misses: cause all caches to snoop bus

 Writes to clean blocks are treated as misses



Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

60

Memory

P1

$

I/O devices
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P2
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P3
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P4
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Example Protocol: snooping

61
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Example Protocol: snooping
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Example Protocol: snooping

63

Memory
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Example Protocol: snooping
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Memory
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Conclusion

79

 Invalidation protocol, write-back cache

 “End” of uniprocessors speedup => Multiprocessors

 Parallelism challenges: % parallalizable, long latency to 

remote memory

 Centralized vs. distributed memory

• Small MP vs. lower latency, larger BW for Larger MP

 Message Passing vs. Shared Address

• Uniform access time vs. Non-uniform access time

 Snooping cache over shared medium for smaller MP by 

invalidating other cached copies on write

 Sharing cached data  Coherence (values returned by a 

read), Consistency (when a written value will be returned by 

a read)

 Shared medium serializes writes 

 Write consistency


