
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part 5.2.1: IO and MultiProcessor

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 I/O

MultiProcessor

 Summary

2

Lund University / EITF20/ Liang Liu 2016

Virtual memory benifits

3

 Using physical memory efficiently

• Allowing software to address more than physical memory

• Enables programs to begin before loading fully (some

implementations)

• Programmers used to use overlays and manually control

loading/unloading (if the program size is larger than mem size)

 Using physical memory simply

• Virtual memory simplifies memory management

• Programmer can think in terms of a large, linear address space

 Using physical memory safely

• Virtual memory protests process’ address spaces

• Processes cannot interfere with each other, because they operate in

different address space (or limited mem space)

• User processes cannot access priviledged information

Lund University / EITF20/ Liang Liu 2016

Virtual memory concept

4

 Is part of memory hierarchy

• The virtual address space is divided

into pages (blocks in Cache)

• The physical address space is

divided into page frames

• A miss is called a page fault

• Pages not in main memory are

stored on disk

 The CPU uses virtual addresses

We need an address translation (memory mapping)

mechanism

Lund University / EITF20/ Liang Liu 2016

Page identification: address mapping

5

 4Byte per page table entry

 Page table will have

220*4=222=4MByte

 64 bit virtual address,16 KB

pages →

264/214*4=252=212TByte

 Solutions

• Multi–level page table

• Inverted page table

Lund University / EITF20/ Liang Liu 2016

Multi-level PT

6

Lund University / EITF20/ Liang Liu 2016

Page identification

7

 How do we avoid two (or more) memory references for each

original memory reference?

• Cache address translations – Translation Look-aside Buffer (TLB)

Table

walker

Lund University / EITF20/ Liang Liu 2016

Summary memory hierarchy

8

Lund University / EITF20/ Liang Liu 2016

Take a step back

9

 So far

• Performance, Quantitative principles

• Instruction set architectures, ISA

• Pipelining, ILP

• Memory systems, cache, virtual memory

 Coming

• I/O, MultiProcessor

• Course summary

Lund University / EITF20/ Liang Liu 2016

Computer function and component

10

Lund University / EITF20/ Liang Liu 2016

Chip-set architecture

12

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 I/O

MultiProcessor

 Summary

13

Lund University / EITF20/ Liang Liu 2016

Who cares about I/O?

14

 CPU performance increases dramatically

 I/O system performance limited by mechanical delays

⇒ less than 10% performance improvement per year

 Amdahl’s law: system speedup limited by the slowest

component:

• Assume 10% I/O

• CPU speedup = 10 ⇒ System speedup = 5

• CPU speedup = 100 ⇒ System speedup = 10

 I/O will more and more become a bottleneck!

 
enhanced

enhanced
enhanced

overall

Speedup

Fraction
 Fraction 1

1
 Speedup





Lund University / EITF20/ Liang Liu 2016

Synchronous/Asynchronous I/O

15

 Synchronous I/O

• Request data

• Wait for data

• Use data

 Asynchronous I/O

• Request data

• Continue with other things

• Block when trying to use data

• Compare non-blocking caches in out-of-order CPUs

• Multiple outstanding I/O requests

Lund University / EITF20/ Liang Liu 2016

I/O technologies

16

 The techniques for I/O have evolved (and sometimes

unevolved):

• Direct control: CPU controls device by reading/writing data lines

directly

• Polled I/O: CPU communicates with hardware via built-in

controller; busy-waits (sampling) for completion of commands

• Driven I/O: CPU issues command to device, gets interrupt on

completion

• Direct memory access: CPU commands device, which transfers

data directly to/from main memory (DMA controller may be

separate module, or on device).

• I/O channels: device has specialized processor, interpreting main

CPU only when it is truly necessary. CPU asks device to execute

entire I/O program

Lund University / EITF20/ Liang Liu 2016

Bus-based interconnect

17

 Buses are the number one technology to connect the

CPU with memory and I/O subsystems

• Advantages: Low cost, shared medium to connect a variety of

devices; standard, flexible, expandable

• Disadvantages: Inherent problem – limited bandwidth; Bandwidth

is limited by bus length and number of devices

Lund University / EITF20/ Liang Liu 2016

Single bus vs multiple bus

18

Single Bus

 Lots of devices on one bus leads to:

• Propagation delays; clock skew (100MHz)

• Long data paths mean that co-ordination of bus use can adversely

affect performance

• Bus may become bottleneck if aggregate data transfer approaches

bus capacity

Most systems use multiple buses to overcome these

problems

Lund University / EITF20/ Liang Liu 2016

Single bus vs multiple bus

19

Multiple Bus

• Allows system to support wide variety of I/O devices

• Insulates memory-to-process traffic from I/O traffic

Lund University / EITF20/ Liang Liu 2016

Example: Intel

20

Lund University / EITF20/ Liang Liu 2016

Example: ARM

21

Lund University / EITF20/ Liang Liu 2016

Buses

22

SATA revision 3.2 (16 Gbit/s, 1969 MB/s)

USB 3.1 Gen2 (10Gbit/s)

PCIe 4.0 (15.7Gbit/s/lane, 252Gbit/s for 16X)

10GBASE-PR 10 Gbit/s

Lund University / EITF20/ Liang Liu 2016

Direct memory access (DMA)

23

 DMA is a feature of computer systems that allows

certain hardware subsystems to access main system

(RAM) memory independently of the CPU

Processor Main Memory

Disk

Printer Keyboard
DMA

Controller

Disk
Network

Interface

Disk/DMA

Controller

Lund University / EITF20/ Liang Liu 2016

DMA: operation

24

 Data transfer between I/O and memory

• Data transfer preparation
 DMA Address Register contains the memory address, Word Count Register

 Commands specify transfer options, DMA transfer mode, the direction

• Control grant
 DMA sends a Bus Request (setting BR to 1)

 When it is ready to grant this request, the CPU sets it’s Bus grant signal, BG to 1

• Data transfer modes
 Bust mode/Cycle stealing mode/Transparent mode

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 I/O

MultiProcessor

 Summary

25

Lund University / EITF20/ Liang Liu 2016

Uniprocessor Performance (Crossroads)

26

Lund University / EITF20/ Liang Liu 2016

Why Parallel Computing

27

 Parallelism: Doing multiple things at a time

• Things: instructions, operations, tasks

Main Goal

• Improve performance (Execution time or task throughput)

• Execution time of a program governed by Amdahl’s Law

 Other Goals

• Improve cost efficiency and scalability, reduce complexity

Harder to design a single unit that performs as well as N simpler

units

• Improve dependability: Redundant execution in space

• Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

Why?

Lund University / EITF20/ Liang Liu 2016

Power Dissipation

28

Lund University / EITF20/ Liang Liu 2016

Outline

Motivation

Multiprocessor Fundamentals

 Consistency, Coherency, Write Serialization

Write Invalidate Protocol

 Example

 Conclusion

29

Lund University / EITF20/ Liang Liu 2016

Types of Parallelism and How to Exploit Them

30

 Instruction Level Parallelism

• Different instructions within a stream can be executed in parallel

• Pipelining, out-of-order execution, speculative execution, VLIW

 Data Parallelism

• Different pieces of data can be operated on in parallel

• SIMD: Vector processing, array processing

• Systolic arrays, streaming processors

 Task Level Parallelism

• Different “tasks/threads” can be executed in parallel

• Multithreading

• Multiprocessing (multi-core)

Lund University / EITF20/ Liang Liu 2016

Flynn’s Taxonomy

31

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single
Data (MISD)

(????)

Multiple Instruction Multiple
Data MIMD

(Clusters, SMP servers)

Lund University / EITF20/ Liang Liu 2016

Basics

32

Definition: “A parallel computer is a collection of processing

elements that cooperate and communicate to solve large

problems fast.”

Parallel Architecture =

Computer Architecture + Communication Architecture

 Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

 Physically Distributed-Memory multiprocessor

• Larger number chips and cores

• BW demands  Memory distributed among processors

Lund University / EITF20/ Liang Liu 2016

Multiprocessor Types

33

 Tightly coupled multiprocessors

• Shared global memory address space

• Traditional multiprocessing: symmetric multiprocessing (SMP)

• Existing multi-core processors, multithreaded processors

• Programming model similar to uniprocessors (i.e., multitasking

uniprocessor) except

Operations on shared data require synchronization

P1

$

Interconnection network

$

Pn

Mem Mem

Lund University / EITF20/ Liang Liu 2016

Multiprocessor Types

34

 Loosely coupled multiprocessors

• No shared global memory address space

• Usually programmed via message passing

 Explicit calls (send, receive) for communication

• Pro: Cost-effective way to scale Memory bandwidth

 If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more complex

• Con: Must change software to take advantage of increased memory BW

P1

$

Interconnection network

$

Pn

Mem Mem

Lund University / EITF20/ Liang Liu 2016

Speed Up (example)

36

a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation is 1 cycle, no communication cost,

each op can be executed in a different processor

 How fast is this with a single processor?

• Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

Lund University / EITF20/ Liang Liu 2016

Speed Up (example)

37

Single Processor (11 clk)

Lund University / EITF20/ Liang Liu 2016

Speed Up (example)

38

3 Processors (5 clk, with 2.2x speed up)

Lund University / EITF20/ Liang Liu 2016

Speed Up (example)

39

Optimize for uniprocessor

R= a4x4 + a3x3 + a2x2 + a1x + a0

R= (((a4x + a3)x + a2)x + a1)x + a0

• 8 clk for uniprocessor

• Speed up 8/5=1.6

• What if communication is not free

Lund University / EITF20/ Liang Liu 2016

Challenges of Parallel Processing

40

First challenge is % of program inherently sequential

Suppose 80X speedup from 100 processors. What

fraction of original program can be sequential?

a. 10%

b. 5%

c. 1%

d. <1%

Lund University / EITF20/ Liang Liu 2016

Amdahl’s Law Answers

41

 

 

 

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1

1
 Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

enhanced

enhanced
enhanced

overall















Lund University / EITF20/ Liang Liu 2016

Challenges of Parallel Processing

42

Second challenge is long latency to remote memory

Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all

local accesses hit memory hierarchy and base CPI is

0.5. (Remote access = 200/0.5 = 400 clock cycles.)

What is performance impact if 0.2% instructions

involve remote access?

a. 1.5X

b. 2.0X

c. 2.5X

Lund University / EITF20/ Liang Liu 2016

CPI Equation

43

CPI = Base CPI +

Remote request rate x Remote request cost

CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

No communication is 1.3/0.5 or 2.6 faster than 0.2%

instructions involving local access

Lund University / EITF20/ Liang Liu 2016

Challenges of Parallel Processing

44

 Synchronization: Operations manipulating shared data

cannot be parallelized

• Communication: Tasks may need values from each other

 Load Imbalance: Parallel tasks may have different lengths

• Due to imperfect parallelization or micro-architectural effects

• Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware

resources, delaying each other

• Replicating all resources (e.g., memory) expensive

• Additional latency not present when each task runs alone

Lund University / EITF20/ Liang Liu 2016

Challenges of Parallel Processing

45

 Application parallelism  primarily via new algorithms that

have better parallel performance

 Long remote latency impact  both by architect and by the

programmer

• For example, reduce frequency of remote accesses either by

• Caching shared data (HW)

• Restructuring the data layout to make more accesses local (SW)

 Today’s lecture on HW to help latency via caches

Lund University / EITF20/ Liang Liu 2016

Symmetric Shared-Memory Architectures

46

 Caches both

• Private data are used by a single processor

• Shared data are used by multiple processors

 Caching shared data

 reduces latency to shared data, memory bandwidth for

shared data, and interconnect bandwidth

 cache coherence problem

Lund University / EITF20/ Liang Liu 2016

Cache Coherence Problem (example)

47

 Processors see different values for u after event 3

 With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when

 Write through caches?

 Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Lund University / EITF20/ Liang Liu 2016

Example (a bit more complicated)

48

 Intuition not guaranteed by coherence

 We might expect memory to respect order between accesses

to different locations issued by a given process

• to preserve orders among accesses to same location by different

processes

 Coherence is not enough!

• pertains only to a single location

• i.e., guarantee a MEM write can be seen by all processors but do NOT

constrain when the write will happen

P1 P2

/*Assume initial value of A and flag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Lund University / EITF20/ Liang Liu 2016

Intuitive Memory Model

49

 Reading an address should return the last value written to

that address

 Too vague and simplistic; 2 issues

• Coherence defines values returned by a read

• Consistency determines when a written value will be returned by a

read

 Coherence defines behavior to same location, Consistency

defines behavior to other locations

Lund University / EITF20/ Liang Liu 2016

Write Consistency

51

For now assume

 A write does not complete (and allow the next write to

occur) until all processors have seen the effect of that write

 The processor does not change the order of any write with

respect to any other memory access

• if a processor writes location A followed by location B, any

processor that sees the new value of B must also see the new value

of A

 These restrictions allow the processor to reorder reads, but

forces the processor to finish writes in program order

Lund University / EITF20/ Liang Liu 2016

Basic Schemes for Enforcing Coherence

52

 Program on multiple processors will normally have copies

of the same data in several caches

 Rather than trying to avoid sharing in SW,

SMPs use a HW protocol to maintain coherent caches

• Migration and Replication key to performance of shared data

 Migration - data can be moved to a local cache and used

there in a transparent fashion

• Reduces both latency to access shared data that is allocated

remotely and bandwidth demand on the shared memory

 Replication – for shared data being simultaneously read,

since caches make a copy of data in local cache

• Reduces both latency of access and contention for read shared

data

Lund University / EITF20/ Liang Liu 2016

2 Classes of Cache Coherence Protocols

53

 Directory based — Sharing status of a block of physical

memory is kept in just one location, the directory

 Snooping — Every cache with a copy of data also has a

copy of sharing status of block, but no centralized state is

kept

• All caches are accessible via some broadcast medium (a bus or

switch)

• All cache controllers monitor or snoop on the medium to determine

whether or not they have a copy of a block that is requested on a

bus or switch access

Lund University / EITF20/ Liang Liu 2016

Snoopy Cache-Coherence Protocols

54

 Cache Controller “snoops” all transactions on the shared

medium (bus or switch)

• relevant transaction if for a block it contains

• take action to ensure coherence

• invalidate, update, or supply value

 Depends on state of the block and the protocol

• Either get exclusive access before write via write invalidate or

update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Lund University / EITF20/ Liang Liu 2016

Example: Write-thru Invalidate

55

 Must invalidate before step 3

 Write update uses more broadcast medium BW

 all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

Lund University / EITF20/ Liang Liu 2016

Architectural Building Blocks

56

 Cache block state transition diagram

• FSM specifying how disposition of block changes: invalid, valid,

dirty

 Broadcast Medium Transactions (e.g., bus)

 Broadcast medium enforces serialization of read or write

accesses  Write serialization

• 1st processor to get medium invalidates others copies

• Implies cannot complete write until it obtains bus

• All coherence schemes require serializing accesses to same cache

block

 Also need to find up-to-date copy of cache block

Lund University / EITF20/ Liang Liu 2016

Locate up-to-date copy of data

57

 Write-through: get up-to-date copy from memory

• Write through simpler if enough memory BW

 Write-back harder

• Most recent copy can be in a cache

 Can use same snooping mechanism

• Snoop every address placed on the bus

• If a processor has dirty copy of requested cache block, it provides it

in response to a read request and aborts the memory access

• Complexity from retrieving cache block from a processor cache,

which can take longer than retrieving it from memory

 Write-back needs lower memory bandwidth
 Support larger numbers of faster processors

 Most multiprocessors use write-back

Lund University / EITF20/ Liang Liu 2016

Cache Resources for WB Snooping

58

 Normal cache tags can be used for snooping

• Valid bit per block makes invalidation easy

 Read misses easy since rely on snooping

 Writes  Need to know if know whether any other copies of

the block are cached

• No other copies  No need to place write on bus for WB

• Other copies  Need to place invalidate on bus

 To track whether a cache block is shared, add extra state bit

associated with each cache block, like valid bit and dirty bit

1. Write to Shared block  Need to place invalidate on bus and mark

cache block as private (if an option)

2. No further invalidations will be sent for that block

3. This processor called owner of cache block

4. Owner then changes state from shared to unshared (or exclusive)

Lund University / EITF20/ Liang Liu 2016

Example Write Back Snoopy Protocol

59

 Invalidation protocol, write-back cache

• Snoops every address on bus

• If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access

 Each memory block is in one state:

• Clean in all caches and up-to-date in memory (Shared)

• OR Dirty in exactly one cache (Exclusive)

• OR Not in any caches

 Each cache block is in one state (track these):

• Shared : block can be read

• OR Exclusive : cache has only copy, its writeable, and dirty

• OR Invalid : block contains no data (in uniprocessor cache too)

 Read misses: cause all caches to snoop bus

 Writes to clean blocks are treated as misses

Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

60

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

61

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

No A No A No A
A

S

Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

62

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

Rd A

A

Rd A

Rd A

S

No A No A
A

S

Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

63

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

Wr A

A
MI I

Rd A

Wr A

Lund University / EITF20/ Liang Liu 2016

Example Protocol: snooping

64

Memory

P1

$

I/O devices

$

P2

$

P3

$

P4

A

Rd A

A

Rd A

S
A

S

Wr A

A
MI I

Rd A

Wr A

Rd A

Rd A

S

S

Wr Back

Lund University / EITF20/ Liang Liu 2016

Conclusion

79

 Invalidation protocol, write-back cache

 “End” of uniprocessors speedup => Multiprocessors

 Parallelism challenges: % parallalizable, long latency to

remote memory

 Centralized vs. distributed memory

• Small MP vs. lower latency, larger BW for Larger MP

 Message Passing vs. Shared Address

• Uniform access time vs. Non-uniform access time

 Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write

 Sharing cached data  Coherence (values returned by a

read), Consistency (when a written value will be returned by

a read)

 Shared medium serializes writes

 Write consistency

