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Dynamic scheduling, speculation summary
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 Tomasulo, CDB, ROB

 Register renaming

 Out-of-order execution, completion

 Tolerates unpredictable delays

 Compile for one pipeline - run effectively on another

 Allows speculation

• multiple branches

• in-order commit

• precise exceptions

• time, energy; recovery

 Significant increase in HW complexity
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CPU performance equation
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Summary pipeline - implementation
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Intel core-2 chip

7



Lund University / EITF20/ Liang Liu 2016

Intel core-2 chip
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Fairchild
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Fairchild: History
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1956 Shockley 

Semiconductor

“Traitorous 8”: Gordon Moore, C. 

Sheldon Roberts, Eugene Kleiner, 

Robert Noyce, Victor Grinich, Julius 

Blank, Jean Hoerni, Jay Last

1957 Fairchild Semiconductor, 

silicon valley

1959 Kilby, TI and Noyce 

First IC

1969 Jerry Sanders and 

7 other Fairchild colleagues
1968 Noyce, Moore, Rock
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Fairchild: History
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The 92 public 

companies that can 

be traced back to 

Fairchild are now 

worth about $2.1 

trillion, which is 

more than the 

annual GDP of 

Canada, India, or 

Spain.
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Memory in early days

15

Punched cards, From early 
1700s through Jaquard Loom, 
Babbage, and then IBM

IBM Card Capacitor ROS (360)
IBM Balanced 
Capacitor ROS (1968)

Punched paper tape, instruction 
stream in Harvard Mk 1 (1950s)
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Memory in early days
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Memory in early days
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Williams Tube, 
Manchester Mark 1, 
1947, first RAM

Babbage, 1800s: Digits 
stored on mechanical 
wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on 
Atanasoff-Berry computer, and rotating 
magnetic drum memory on IBM 650
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MIT Whirlwind Core Memory
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Core Memory
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 Core memory was first large scale reliable main memory

 Invented by Forrester in late 40s/early 50s at MIT for 

Whirlwind project 

 Bits stored as magnetization polarity on small ferrite cores 

threaded onto two-dimensional grid of wires 

 Robust, non-volatile storage

 Used on space shuttle computers 

 Core access time ~ 1ms 

http://royal.pingdom.com/2008/04/08/the-history-of-

computer-data-storage-in-pictures/
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Semiconductor memory
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Memory Classification

Picture from Embedded Systems Design: A Unified Hardware/Software Introduction
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Memory Architecture
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Register, SRAM, DRAM
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DFF Cell (16T)

DRAM Cell (1T)SRAM Cell (6T)
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Semiconductor memory
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First 32nm NAND Flash memory, 2009, Toshiba

First 32nm CPU released, 2010, Intel Core i3
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Semiconductor memory
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First 22-nm SRAMs using Tri-Gate transistors, in Sept.2009

First 22-nm Tri-Gate microprocessor (Ivy Bridge), released in 2013
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Themal imaging
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ASUS motherboard with 

an i7 quad core processor 

and triple channel 

memory.

the stock Intel cooler for 

quad core i7 processor
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Embedded DRAM
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Meomory design
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Memory, big fast, cheap
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Use two “magic” tricks (from architecture)

Make a small memory seem bigger (Without making it 

much slower) => virtual memory

Make a slow memory seem faster (Without making it 

smaller) => cache memory 
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Memory tricks (techniques)
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Initial model of memory hierarchy
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Levels of memory hierarchy
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Levels of memory hierarchy
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CPU Registers
500 Bytes
0.25 ns
~$.01

Cache
16K-1M Bytes
1 ns
~$10-4

Main Memory
64M-2G Bytes
100ns
~$10-7

Disk
100 G Bytes
5 ms
~$10-7- 10-9

Capacity
Access Time
Cost/bit

Tape/Network
“infinite”
secs.
~$10-10

Registers

L1, L2, … Cache

Memory

Disk

Tape/Network

Words

Blocks

Pages

Files

Staging
Transfer Unit

programmer/compiler
1-8 bytes

cache controller
8-128 bytes

OS
4-64K bytes

user/operator
Mbytes

Upper Level

Lower Level

Faster

Larger
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Hierarchy, Heterogeneous
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Hierarchy, Heterogeneous
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The motivation
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 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200 
instructions during time for one memory access!
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Bandwidth example
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Assume an “ideal” CPU with no stalls, running at 3 GHz and 

capable of issuing 3 instructions (32 bit) per cycle.
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Memory hierarchy functionality
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 CPU tries to access memory at address A. If A is in the cache, 

deliver it directly to the CPU

 If not – transfer a block of memory words, containing A, from the 

memory to the cache. Access A in the cache

 If A not present in the memory – transfer a page of memory 

blocks, containing A, from disk to the memory, then transfer the 

block containing A from memory to cache. Access A in the cache
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The principle of locality
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 A program access a relatively small portion of the 

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend 

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items 

whose addresses are close, tend to be referenced soon
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The principle of locality
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Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM 
Systems Journal 10(3): 168-192 (1971)
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The principle of locality
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Memory hierarchy terminology
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Cache measures
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 hit rate = (# of accesses that hit)/(# of accesses)

• Ideal: close to 1

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine 

hit/miss

miss penalty: time to replace a block

• measured in ns or # of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty
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Four memory hierarchy questions
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 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)
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Block placement
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cache

memory
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Block placement
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 Direct Mapped Cache

• Each memory location can only mapped to 1 cache location

• No need to make any decision => Current item replaces previous item 

in that cache location

 N-way Set Associative Cache

• Each memory location have a choice of N cache locations

 Fully Associative Cache

• Each memory location can be placed in ANY cache location

 Cache miss in a N-way Set Associative or Fully 

Associative Cache

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Need to decide which block to throw out!
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Block identification
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tag index
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Example: 1KB, Direct-Mapped, 32B Blocks
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 For a 1024 (210) byte cache with 32-byte blocks

• The uppermost 22 = (32 - 10) address bits are the tag

• The lowest 5 address bits are the Byte Select (Block Size = 25)

• The next 5 address bits (bit5 - bit9) are the Cache Index

0431 9

Cache Index

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part

of the cache “state”

Valid Bit

:

0

1

2

3

:

Cache Data

Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

Byte Select

Byte 32
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Which block should be replaced on a Cache miss?
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 Direct mapped caches don’t need a block replacement 

policy 

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)
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Cache read
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Reads dominate processor cache accesses and are more 

critical to processor performance but write is more 

complicated
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Cache write (hit) 
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Write through: 

• The information is written to both 

the block in the cache and to the 

block in the lower-level memory

• Is always combined with write 

buffers so that the CPU doesn’t 

have to wait for the lower level 

memory

Write back: 

• The information is written only to 

the block in the cache

• Copy a modified cache block to 

main memory only when replaced

• Is the block clean or modified? 

(dirty bit, several write to the same 

block)

Write Buffer
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On a write miss
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 Do we allocate a cache block on a write miss?

• Write allocate (allocate a block in the cache)

• No-write allocate (no cache block is allocated.  Write is only to main 

memory, or next level of hierarchy)

 General combination

• A write-back cache uses write allocate, hoping for subsequent writes 

(or even reads) to the same location, which is now cached.

• A write-through cache uses no-write allocate. Here, subsequent 

writes have no advantage, since they still need to be written directly to 

the backing store.
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Cache micro-ops sequencing (AMD Opteron)
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64K bytes in 64 byte blocks

2-way set associative

Address division

Set/block selection

Tag read/Valid bit checking

Hit: Data out

Miss: Signal cache miss; 

initiate replacement
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Cache performance
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Interlude – CPU performance equation

58



Lund University / EITF20/ Liang Liu 2016

Cache performance
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 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)
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Cache performance, example
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Sources of Cache miss
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 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and 

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache 

block with a direct or set-associative address mapping
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Miss rate components – 3 C’s
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Miss rate (relative) components – 3 C’s
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Cache Size (KB)    
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Miss rate components
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Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity  Miss

Big Medium Small

Same Same Same

Conflict Miss High Medium Zero

Low(er) Medium High
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Cache size: power
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Size Leakage Dynamic

8M Byte 76mW 30mW
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Miss rate components – 3 C’s
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 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small 

set-associative caches

Miss may move from one to another!
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Block size tradeoff
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 In general, larger block size 

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill 

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too 

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks: 
especially for 
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size
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Summary
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 Performance of main memory:

• Latency affects: Cache miss penalty
 Access time: time between request and word arrives

• Bandwidth affects: I/O, multiprocessors (& cache miss penalty)

Main memory is DRAM: Dynamic RAM

• Dynamic - memory cells need to be refreshed

• 1 transistor and a capacitor per bit

• Complicated addressing

 Cache memory is SRAM: Static RAM

• No refresh

• 6 transistors per bit

• Simple addressing

Technology is changing!
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Summary
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 The performance gap 

between CPU and memory 

is widening

Memory Hierarchy

• Cache level 1

• Cache level ...

• Main memory

• Virtual memory

 Four design issues:

• Block placement

• Block identification

• Block replacement

• Write strategy
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Summary
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 Cache misses increases the CPI for instructions that 

access memory

 Three types of misses:

• Compulsory

• Capacity

• Conflict

Main memory performance:

• Latency

• Bandwidth


