
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part4.1.1: Cache - 1

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

2

Lund University / EITF20/ Liang Liu 2016

Dynamic scheduling, speculation summary

3

 Tomasulo, CDB, ROB

 Register renaming

 Out-of-order execution, completion

 Tolerates unpredictable delays

 Compile for one pipeline - run effectively on another

 Allows speculation

• multiple branches

• in-order commit

• precise exceptions

• time, energy; recovery

 Significant increase in HW complexity

Lund University / EITF20/ Liang Liu 2016

CPU performance equation

4

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - implementation

5

Lund University / EITF20/ Liang Liu 2016

Intel core-2 chip

7

Lund University / EITF20/ Liang Liu 2016

Intel core-2 chip

8

Lund University / EITF20/ Liang Liu 20169

News

Lund University / EITF20/ Liang Liu 2016

Fairchild

10

Lund University / EITF20/ Liang Liu 2016

Fairchild: History

11

1956 Shockley

Semiconductor

“Traitorous 8”: Gordon Moore, C.

Sheldon Roberts, Eugene Kleiner,

Robert Noyce, Victor Grinich, Julius

Blank, Jean Hoerni, Jay Last

1957 Fairchild Semiconductor,

silicon valley

1959 Kilby, TI and Noyce

First IC

1969 Jerry Sanders and

7 other Fairchild colleagues
1968 Noyce, Moore, Rock

Lund University / EITF20/ Liang Liu 2016

Fairchild: History

12

The 92 public

companies that can

be traced back to

Fairchild are now

worth about $2.1

trillion, which is

more than the

annual GDP of

Canada, India, or

Spain.

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

13

Lund University / EITF20/ Liang Liu 2016

Memory in early days

15

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM

IBM Card Capacitor ROS (360)
IBM Balanced
Capacitor ROS (1968)

Punched paper tape, instruction
stream in Harvard Mk 1 (1950s)

Lund University / EITF20/ Liang Liu 2016

Memory in early days

16

Lund University / EITF20/ Liang Liu 2016

Memory in early days

17

Williams Tube,
Manchester Mark 1,
1947, first RAM

Babbage, 1800s: Digits
stored on mechanical
wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

Lund University / EITF20/ Liang Liu 2016

MIT Whirlwind Core Memory

18

Lund University / EITF20/ Liang Liu 2016

Core Memory

19

 Core memory was first large scale reliable main memory

 Invented by Forrester in late 40s/early 50s at MIT for

Whirlwind project

 Bits stored as magnetization polarity on small ferrite cores

threaded onto two-dimensional grid of wires

 Robust, non-volatile storage

 Used on space shuttle computers

 Core access time ~ 1ms

http://royal.pingdom.com/2008/04/08/the-history-of-

computer-data-storage-in-pictures/

Lund University / EITF20/ Liang Liu 2016

Semiconductor memory

20

Lund University / EITF20/ Liang Liu 2016

Memory Classification

Picture from Embedded Systems Design: A Unified Hardware/Software Introduction

21

Lund University / EITF20/ Liang Liu 2016

Memory Architecture

22

Lund University / EITF20/ Liang Liu 2016

Register, SRAM, DRAM

23

DFF Cell (16T)

DRAM Cell (1T)SRAM Cell (6T)

Lund University / EITF20/ Liang Liu 2016

Semiconductor memory

24

First 32nm NAND Flash memory, 2009, Toshiba

First 32nm CPU released, 2010, Intel Core i3

Lund University / EITF20/ Liang Liu 2016

Semiconductor memory

25

First 22-nm SRAMs using Tri-Gate transistors, in Sept.2009

First 22-nm Tri-Gate microprocessor (Ivy Bridge), released in 2013

Lund University / EITF20/ Liang Liu 2016

Themal imaging

26

ASUS motherboard with

an i7 quad core processor

and triple channel

memory.

the stock Intel cooler for

quad core i7 processor

Lund University / EITF20/ Liang Liu 2016

Embedded DRAM

27

Lund University / EITF20/ Liang Liu 2016

Meomory design

28

Lund University / EITF20/ Liang Liu 2016

Memory, big fast, cheap

29

Use two “magic” tricks (from architecture)

Make a small memory seem bigger (Without making it

much slower) => virtual memory

Make a slow memory seem faster (Without making it

smaller) => cache memory

Lund University / EITF20/ Liang Liu 2016

Memory tricks (techniques)

30

Lund University / EITF20/ Liang Liu 2016

Initial model of memory hierarchy

31

Lund University / EITF20/ Liang Liu 2016

Levels of memory hierarchy

32

Lund University / EITF20/ Liang Liu 2016

Levels of memory hierarchy

33

CPU Registers
500 Bytes
0.25 ns
~$.01

Cache
16K-1M Bytes
1 ns
~$10-4

Main Memory
64M-2G Bytes
100ns
~$10-7

Disk
100 G Bytes
5 ms
~$10-7- 10-9

Capacity
Access Time
Cost/bit

Tape/Network
“infinite”
secs.
~$10-10

Registers

L1, L2, … Cache

Memory

Disk

Tape/Network

Words

Blocks

Pages

Files

Staging
Transfer Unit

programmer/compiler
1-8 bytes

cache controller
8-128 bytes

OS
4-64K bytes

user/operator
Mbytes

Upper Level

Lower Level

Faster

Larger

Lund University / EITF20/ Liang Liu 2016

Hierarchy, Heterogeneous

34

Lund University / EITF20/ Liang Liu 2016

Hierarchy, Heterogeneous

35

Lund University / EITF20/ Liang Liu 2016

The motivation

36

 1980: no cache in microprocessors

 1995: 2-level caches in a processor package

 2000: 2-level caches on a processor die

 2003: 3-level caches on a processor die

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

Lund University / EITF20/ Liang Liu 2016

Bandwidth example

37

Assume an “ideal” CPU with no stalls, running at 3 GHz and

capable of issuing 3 instructions (32 bit) per cycle.

Lund University / EITF20/ Liang Liu 2016

Memory hierarchy functionality

39

 CPU tries to access memory at address A. If A is in the cache,

deliver it directly to the CPU

 If not – transfer a block of memory words, containing A, from the

memory to the cache. Access A in the cache

 If A not present in the memory – transfer a page of memory

blocks, containing A, from disk to the memory, then transfer the

block containing A from memory to cache. Access A in the cache

Lund University / EITF20/ Liang Liu 2016

The principle of locality

40

 A program access a relatively small portion of the

address space at any instant of time

 Two different types of locality:

• Temporal locality (Locality in Time): If an item is referenced, it will tend

to be referenced again soon.

• Spatial locality (Locality in space): If an item is referenced, items

whose addresses are close, tend to be referenced soon

Lund University / EITF20/ Liang Liu 2016

The principle of locality

41

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM
Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
Locality

Lund University / EITF20/ Liang Liu 2016

The principle of locality

42

Lund University / EITF20/ Liang Liu 2016

Memory hierarchy terminology

43

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

44

Lund University / EITF20/ Liang Liu 2016

Cache measures

45

 hit rate = (# of accesses that hit)/(# of accesses)

• Ideal: close to 1

miss rate = 1.0 − hit rate

 hit time: cache access time plus time to determine

hit/miss

miss penalty: time to replace a block

• measured in ns or # of clock cycles and depends on:

• latency: time to get first word

• bandwidth: time to transfer block

out-of-order execution can hide some of the miss penalty

 Average memory access time = hit time + miss rate ∗
miss penalty

Lund University / EITF20/ Liang Liu 2016

Four memory hierarchy questions

46

 Q1: Where can a block be placed in the upper level?

(Block placement)

 Q2: How is a block found if it is in the upper level?

(Block identification)

 Q3: Which block should be replaced on a miss?

(Block replacement)

 Q4: What happens on a write?

(Write strategy)

Lund University / EITF20/ Liang Liu 2016

Block placement

47

cache

memory

Lund University / EITF20/ Liang Liu 2016

Block placement

48

 Direct Mapped Cache

• Each memory location can only mapped to 1 cache location

• No need to make any decision => Current item replaces previous item

in that cache location

 N-way Set Associative Cache

• Each memory location have a choice of N cache locations

 Fully Associative Cache

• Each memory location can be placed in ANY cache location

 Cache miss in a N-way Set Associative or Fully

Associative Cache

• Bring in new block from memory

• Throw out a cache block to make room for the new block

• Need to decide which block to throw out!

Lund University / EITF20/ Liang Liu 2016

Block identification

49

tag index

Lund University / EITF20/ Liang Liu 2016

Example: 1KB, Direct-Mapped, 32B Blocks

50

 For a 1024 (210) byte cache with 32-byte blocks

• The uppermost 22 = (32 - 10) address bits are the tag

• The lowest 5 address bits are the Byte Select (Block Size = 25)

• The next 5 address bits (bit5 - bit9) are the Cache Index

0431 9

Cache Index

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part

of the cache “state”

Valid Bit

:

0

1

2

3

:

Cache Data

Byte 0

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

Byte Select

Byte 32

Lund University / EITF20/ Liang Liu 2016

Which block should be replaced on a Cache miss?

51

 Direct mapped caches don’t need a block replacement

policy

 Primary strategies:

• Random (easiest to implement)

• LRU – Least Recently Used (best, hard to implement)

• FIFO – Oldest (used to approximate LRU)

Lund University / EITF20/ Liang Liu 2016

Cache read

52

Reads dominate processor cache accesses and are more

critical to processor performance but write is more

complicated

Lund University / EITF20/ Liang Liu 2016

Cache write (hit)

53

Write through:

• The information is written to both

the block in the cache and to the

block in the lower-level memory

• Is always combined with write

buffers so that the CPU doesn’t

have to wait for the lower level

memory

Write back:

• The information is written only to

the block in the cache

• Copy a modified cache block to

main memory only when replaced

• Is the block clean or modified?

(dirty bit, several write to the same

block)

Write Buffer

Lund University / EITF20/ Liang Liu 2016

On a write miss

54

 Do we allocate a cache block on a write miss?

• Write allocate (allocate a block in the cache)

• No-write allocate (no cache block is allocated. Write is only to main

memory, or next level of hierarchy)

 General combination

• A write-back cache uses write allocate, hoping for subsequent writes

(or even reads) to the same location, which is now cached.

• A write-through cache uses no-write allocate. Here, subsequent

writes have no advantage, since they still need to be written directly to

the backing store.

Lund University / EITF20/ Liang Liu 2016

Cache micro-ops sequencing (AMD Opteron)

55

64K bytes in 64 byte blocks

2-way set associative

Address division

Set/block selection

Tag read/Valid bit checking

Hit: Data out

Miss: Signal cache miss;

initiate replacement

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

56

Lund University / EITF20/ Liang Liu 2016

Cache performance

57

Lund University / EITF20/ Liang Liu 2016

Interlude – CPU performance equation

58

Lund University / EITF20/ Liang Liu 2016

Cache performance

59

 Three ways to increase performance:

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time (improves TC)

Lund University / EITF20/ Liang Liu 2016

Cache performance, example

60

Lund University / EITF20/ Liang Liu 2016

Sources of Cache miss

61

 A cache miss can be classified as a:

• Compulsory miss: The first reference is always a miss

• Capacity miss: If the cache memory is to small it will fill up and

subsequent references will miss

• Conflict miss: Two memory blocks may be mapped to the same cache

block with a direct or set-associative address mapping

Lund University / EITF20/ Liang Liu 2016

Miss rate components – 3 C’s

62

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0

0 .02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1 -way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

Lund University / EITF20/ Liang Liu 2016

Miss rate (relative) components – 3 C’s

63

Cache Size (KB)

M
is

s
 R

a
te

 p
e

r
T

y
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1 -way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Lund University / EITF20/ Liang Liu 2016

Miss rate components

64

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Big Medium Small

Same Same Same

Conflict Miss High Medium Zero

Low(er) Medium High

Lund University / EITF20/ Liang Liu 2016

Cache size: power

65

Size Leakage Dynamic

8M Byte 76mW 30mW

Lund University / EITF20/ Liang Liu 2016

Miss rate components – 3 C’s

66

 Small percentage of compulsory misses

 Capacity misses are reduced by larger caches

 Full associativity avoids all conflict misses

 Conflict misses are relatively more important for small

set-associative caches

Miss may move from one to another!

Lund University / EITF20/ Liang Liu 2016

Block size tradeoff

67

 In general, larger block size

• Take advantage of spatial locality, BUT

• Larger block size means larger miss penalty =>Takes longer time to fill

up the block

• If block size is too big relative to cache size, miss rate will go up =>Too

few cache blocks

Miss
Penalty

Block Size

Miss
Rate Exploits spatial locality

Fewer blocks:
especially for
small cache

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access Time

Block Size

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

Memory hierarchy

 Cache memory

 Cache performance

 Summary

68

Lund University / EITF20/ Liang Liu 2016

Summary

69

 Performance of main memory:

• Latency affects: Cache miss penalty
 Access time: time between request and word arrives

• Bandwidth affects: I/O, multiprocessors (& cache miss penalty)

Main memory is DRAM: Dynamic RAM

• Dynamic - memory cells need to be refreshed

• 1 transistor and a capacitor per bit

• Complicated addressing

 Cache memory is SRAM: Static RAM

• No refresh

• 6 transistors per bit

• Simple addressing

Technology is changing!

Lund University / EITF20/ Liang Liu 2016

Summary

70

 The performance gap

between CPU and memory

is widening

Memory Hierarchy

• Cache level 1

• Cache level ...

• Main memory

• Virtual memory

 Four design issues:

• Block placement

• Block identification

• Block replacement

• Write strategy

Lund University / EITF20/ Liang Liu 2016

Summary

71

 Cache misses increases the CPI for instructions that

access memory

 Three types of misses:

• Compulsory

• Capacity

• Conflict

Main memory performance:

• Latency

• Bandwidth

