
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part3.2.1: Pipeline - 3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far (pipeline)

2

Lund University / EITF20/ Liang Liu 2016

Instruction level parallelism (ILP)

3

 ILP: Overlap execution of unrelated instructions:

Pipelining

 Pipeline CPI = Ideal CPI + Structural stalls + Data

hazard stalls + Control stalls

 Two main approaches:

• DYNAMIC ⇒ hardware detects parallelism

• STATIC ⇒ software detects parallelism

• Often a mix between both

Lund University / EITF20/ Liang Liu 2016

Dependencies

4

 Two instructions must be independent in order to

execute in parallel

 There are three general types of dependencies that

limit parallelism:

• Data dependencies (RAW)

• Name dependencies (WAR, WAW)

• Control dependencies

 Dependencies are properties of the program

Whether a dependency leads to a hazard or not is a

property of the pipeline implementation

Lund University / EITF20/ Liang Liu 2016

Dynamic branch prediction

5

 Branches limit performance because:

• Branch penalties

• Limit to available Instruction Level Parallelism

 Dynamic branch prediction to predict the outcome of

conditional branches

• Branch history table

• Branch target buffer

 Benefits:

• Reduce the time to when the branch condition is known

• Reduce the time to calculate the branch target address

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

6

 Scoreboarding is to execute an instruction as early as possible

 Instructions execute out-of-order when there are sufficient

resources and no data dependencies

 A scoreboard is a hardware unit that keeps track of

• the instructions that are in the process of being executed

• the functional units that are doing the executing

• and the registers that will hold the results of those units

 A scoreboard centrally performs all hazard detection and

instruction control

Lund University / EITF20/ Liang Liu 2016

Scoreboard functionality

7

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR

hazards)

Lund University / EITF20/ Liang Liu 2016

Factors that limits performance

8

The scoreboard technique is limited by:

 The amount of parallelism available in code

 The number of scoreboard entries (window size)

• A large window can look ahead across more instructions

 The number and types of functional units

• Contention for functional units leads to structural hazards

 The presence of anti-dependencies and output

dependencies

• These lead to WAR and WAW hazards that are handled by stalling the

instruction in the Scoreboard

 Number of data-paths to registers

Tomasulo’s algorithm addresses the last two

limitations.

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

9

Lund University / EITF20/ Liang Liu 2016

Tomasulo algorithm

10

Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600

(Scoreboard)

 Goal: High performance without compiler support

Lund University / EITF20/ Liang Liu 2016

Registr renaming

11

 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Any subsequent uses of F6 should be replaced by FT (until the next

wirte to F6)

 Register renaming can be done:

• statically by the compiler

• dynamically by the hardware

DIVD F10, F0, F6

ADDD FT, F8, F2

...

SD FT, 35(R3)

LD FT, 34(R2)

...

DIVD F10, F0, FT

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu 2016

Tomasulo orgnizations

12

Lund University / EITF20/ Liang Liu 2016

Reservation stations

13

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each

register

• Blank when no pending instructions that will write that register

Lund University / EITF20/ Liang Liu 2016

Three stages of Tomasulo algorithm

14

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

 Normal Bus: data + destination

 Common Data Bus: data + source (snooping)

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 0

15

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 1

16

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 3

17

Note:

1. Can have multiple

loads

2. Registers names are

removed (“renamed”)

in Reservation

Stations

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 4

18

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 5

19

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 7

20

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 10

21

Can we write the

result of ADDD?

Lund University / EITF20/ Liang Liu 2016

Elimation of WAR hazard

22

 ADDD can safely finish before DIVD has read register F6

because:

• DIVD has renamed register F6 to the reservation station

• LD broadcasts its result on the Common Data Bus

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 11

23

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 16

24

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 57

25

Lund University / EITF20/ Liang Liu 2016

Comparing: Scoreboard example, CP62

26

Lund University / EITF20/ Liang Liu 2016

Tomasulo vs Scoreboard

27

Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)

Lund University / EITF20/ Liang Liu 2016

Tomasulo summary

28

 Instructions: move from decoder to reservation stations

• In program order

• Dependences can be correctly recorded

• Distributed harzard detection

 Significant increase in HW cost

 Benefits

• Register renaming, remove WAW, WAR hazard

• Out-of-order execution, completion

• Tolerates unpredictable delays (especially for cache)

• Compile for one pipeline - run effectively on another

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

29

Lund University / EITF20/ Liang Liu 2016

Getting CPI <1 !?

30

Issuing multiple (independent) instructions per clock cycle

 Superscalar: varying number of instructions/cycle (1-8)

scheduled by compiler or HW

• IBM Power5, Pentium 4, Sun SuperSparc, DEC Alpha

• Simple hardware, complicated compiler (static) or...

• Very complex hardware but simple for compiler (dynamic)

 Very Long Instruction Word (VLIW): fixed number of

instructions (3-5) scheduled by the compiler

• HP/Intel IA-64, Itanium

• Simple hardware, difficult for compiler

• High performance through extensive compiler optimization

Lund University / EITF20/ Liang Liu 2016

Approches for multiple issuing

31

Lund University / EITF20/ Liang Liu 2016

VLIW

32

 A number of functional units that independently execute

instructions in parallel.

 The compiler decides which instructions can execute in

parallel

 No hazard detection needed

Lund University / EITF20/ Liang Liu 2016

VLIW instuction format - Itanium

33

Lund University / EITF20/ Liang Liu 2016

VLIW architecture- Itanium

34

Lund University / EITF20/ Liang Liu 2016

VLIW limitations

35

 Limited Instruction Level Parallelism

• With n functional units and k pipeline stages we need n * k independent

instructions to utilize the hardware

 Memory and register bandwidth

• With increasing number of functional units, the number of ports needed at

the memory or register file must increase to prevent structural hazards

 Code size

• Compiler scheduled pipeline “bubbles” take up space in the instruction

• Need more aggressive loop unrolling to work well which also increases

code size

 No binary code compatibility

• Different pipeline stages and # function units requires different code

 Synchronization

• Stall in one FU cause the entire processor to stall

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

36

Lund University / EITF20/ Liang Liu 2016

Hardware-base speculation

37

 Trying to exploit more ILP (e.g., multiple issue) while

maintaining control dependencies becomes a burden

 Overcome control dependencies

• By speculating on the outcome of branches and executing the

program as if our guesses were correct

• Need to handle incorrect guesses

Methodologies:

• Dynamic branch prediction: allows instruction scheduling across

branches (no exe)

• Dynamic scheduling: take advantage of ILP (wait for clear

branch)

• Speculation: execute instructions before all control

dependencies are resolved (basically data flow)

Lund University / EITF20/ Liang Liu 2016

Hardware vs software speculation

38

 Advantages:

• Dynamic branch prediction is often better than static which limits

the performance of SW speculation

• HW speculation can maintain a precise exception model

• Can achieve higher performance on older code (without

recompilation)

Main disadvantage:

• Extremely complex implementation and extensive need for

hardware resources

Lund University / EITF20/ Liang Liu 2016

Implementing speculation

39

 Key idea

• Allow instructions to execute out of order

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking

an exception) until an instruction commits

 Strategies:

• Must separate bypassing of results among instructions from

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not

commiteed

Lund University / EITF20/ Liang Liu 2016

Tomasulo extended to support speculation

40

Lund University / EITF20/ Liang Liu 2016

ROB (reorder buffer)

41

 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially

replaced by the ROB

Lund University / EITF20/ Liang Liu 2016

ROB (reorder buffer)

42

 When MUL.D is ready to commit

Lund University / EITF20/ Liang Liu 2016

Four-step speculation

43

 Issue:

• Get instruction from instruction queue and issue if reservation

station and ROB slots available – sometimes called dispatch

• Send operands or ROB entry #

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer

speculative; update register with result (or store to memory) and

remove instr. from ROB;

• handle mis-speculations and precise exceptions

Lund University / EITF20/ Liang Liu 2016

Four-step speculation

44

 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or

exception): remove all instr. from reorder buffer (flush); restart

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste

computation power & time if wrong)

Lund University / EITF20/ Liang Liu 2016

Sandy bridge microarchitecture

45

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

46

Lund University / EITF20/ Liang Liu 2016

ILP

47

How much performance can be get

from instruction-level parallelism?

Lund University / EITF20/ Liang Liu 2016

A model of an idea processor

48

 Assumptions for ideal/perfect machine to start:

• Register renaming: infinite virtual registers => all register WAW &

WAR hazards are avoided

• Branch prediction: perfect; no mispredictions

• Jump prediction: all jumps perfectly predicted

• 2 & 3 => machine with perfect speculation & an unbounded buffer

of instructions available

• Memory: addresses are known, perfect caches;

 There are only true data dependencies left!

Lund University / EITF20/ Liang Liu 2016

Upper limit to ILP (# of instruction per cycle)

49

Programs

In
s

tr
u

c
ti

o
n

 I
s

s
u

e
s

 p
e

r
c

y
c

le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Lund University / EITF20/ Liang Liu 2016

Window size impact

50

Lund University / EITF20/ Liang Liu 2016

Branch impact

51

Lund University / EITF20/ Liang Liu 2016

Register # impact

52

Lund University / EITF20/ Liang Liu 2016

Summary

53

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

54

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - method

55

Lund University / EITF20/ Liang Liu 2016

Basic 5-stage pipeline

56

Lund University / EITF20/ Liang Liu 2016

Pipeline with several FUs

57

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

58

Lund University / EITF20/ Liang Liu 2016

Tomasulo pipeline

59

Lund University / EITF20/ Liang Liu 2016

Tomasulo pipeline with speculation

60

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - implementation

61

