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Instruction level parallelism (ILP)
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 ILP: Overlap execution of unrelated instructions: 

Pipelining

 Pipeline CPI = Ideal CPI + Structural stalls + Data 

hazard stalls + Control stalls

 Two main approaches:

• DYNAMIC ⇒ hardware detects parallelism

• STATIC ⇒ software detects parallelism

• Often a mix between both
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Dependencies
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 Two instructions must be independent in order to 

execute in parallel

 There are three general types of dependencies that 

limit parallelism:

• Data dependencies (RAW)

• Name dependencies (WAR, WAW)

• Control dependencies

 Dependencies are properties of the program

Whether a dependency leads to a hazard or not is a 

property of the pipeline implementation
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Dynamic branch prediction
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 Branches limit performance because:

• Branch penalties

• Limit to available Instruction Level Parallelism

 Dynamic branch prediction to predict the outcome of 

conditional branches

• Branch history table

• Branch target buffer

 Benefits:

• Reduce the time to when the branch condition is known

• Reduce the time to calculate the branch target address
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Scoreboard pipeline
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 Scoreboarding is to execute an instruction as early as possible

 Instructions execute out-of-order when there are sufficient 

resources and no data dependencies

 A scoreboard is a hardware unit that keeps track of 

• the instructions that are in the process of being executed

• the functional units that are doing the executing

• and the registers that will hold the results of those units

 A scoreboard centrally performs all hazard detection and 

instruction control
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Scoreboard functionality
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 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of 

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR 

hazards)
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Factors that limits performance
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The scoreboard technique is limited by:

 The amount of parallelism available in code

 The number of scoreboard entries (window size)

• A large window can look ahead across more instructions

 The number and types of functional units

• Contention for functional units leads to structural hazards

 The presence of anti-dependencies and output 

dependencies

• These lead to WAR and WAW hazards that are handled by stalling the 

instruction in the Scoreboard

 Number of data-paths to registers 

Tomasulo’s algorithm addresses the last two 

limitations.



Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

9



Lund University / EITF20/ Liang Liu 2016

Tomasulo algorithm
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Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600 

(Scoreboard)

 Goal: High performance without compiler support
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Registr renaming
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 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Any subsequent uses of F6 should be replaced by FT (until the next 

wirte to F6) 

 Register renaming can be done:

• statically by the compiler

• dynamically by the hardware

DIVD   F10, F0, F6

ADDD FT, F8, F2

...

SD      FT, 35(R3)

LD       FT, 34(R2)

...

DIVD   F10, F0, FT

ADDD F6, F8, F2
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Tomasulo orgnizations
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Reservation stations
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 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source 

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each 

register

• Blank when no pending instructions that will write that register 
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Three stages of Tomasulo algorithm
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 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point 

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

 Normal Bus: data + destination

 Common Data Bus: data + source (snooping)
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Tomasulo example, cycle 0
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Tomasulo example, cycle 1
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Tomasulo example, cycle 3
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Note: 

1. Can have multiple 

loads

2. Registers names are 

removed (“renamed”) 

in Reservation 

Stations
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Tomasulo example, cycle 4
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Tomasulo example, cycle 5
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Tomasulo example, cycle 7
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Tomasulo example, cycle 10
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Can we write the 

result of ADDD?
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Elimation of WAR hazard
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 ADDD can safely finish before DIVD has read register F6 

because:

• DIVD has renamed register F6 to the reservation station

• LD broadcasts its result on the Common Data Bus
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Tomasulo example, cycle 11
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Tomasulo example, cycle 16
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Tomasulo example, cycle 57
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Comparing: Scoreboard example, CP62
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Tomasulo vs Scoreboard 
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Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus 

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation 

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)
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Tomasulo summary
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 Instructions: move from decoder to reservation stations

• In program order 

• Dependences can be correctly recorded 

• Distributed harzard detection

 Significant increase in HW cost

 Benefits

• Register renaming, remove WAW, WAR hazard

• Out-of-order execution, completion

• Tolerates unpredictable delays (especially for cache)

• Compile for one pipeline - run effectively on another
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Getting CPI <1 !?
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Issuing multiple (independent) instructions per clock cycle

 Superscalar: varying number of instructions/cycle (1-8) 

scheduled by compiler or HW

• IBM Power5, Pentium 4, Sun SuperSparc, DEC Alpha

• Simple hardware, complicated compiler (static) or...

• Very complex hardware but simple for compiler (dynamic)

 Very Long Instruction Word (VLIW): fixed number of 

instructions (3-5) scheduled by the compiler

• HP/Intel IA-64, Itanium

• Simple hardware, difficult for compiler

• High performance through extensive compiler optimization
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Approches for multiple issuing
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VLIW 
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 A number of functional units that independently execute 

instructions in parallel.

 The compiler decides which instructions can execute in 

parallel

 No hazard detection needed
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VLIW instuction format - Itanium  
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VLIW architecture- Itanium  
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VLIW limitations 
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 Limited Instruction Level Parallelism

• With n functional units and k pipeline stages we need n * k independent 

instructions to utilize the hardware

 Memory and register bandwidth

• With increasing number of functional units, the number of ports needed at 

the memory or register file must increase to prevent structural hazards

 Code size

• Compiler scheduled pipeline “bubbles” take up space in the instruction

• Need more aggressive loop unrolling to work well which also increases 

code size

 No binary code compatibility

• Different pipeline stages and # function units requires different code

 Synchronization

• Stall in one FU cause the entire processor to stall
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Hardware-base speculation
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 Trying to exploit more ILP (e.g., multiple issue) while 

maintaining control dependencies becomes a burden

 Overcome control dependencies 

• By speculating on the outcome of branches and executing the 

program as if our guesses were correct

• Need to handle incorrect guesses

Methodologies:

• Dynamic branch prediction: allows instruction scheduling across 

branches (no exe)

• Dynamic scheduling: take advantage of ILP (wait for clear 

branch)

• Speculation:  execute instructions before all control 

dependencies are resolved (basically data flow)
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Hardware vs software speculation
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 Advantages:

• Dynamic branch prediction is often better than static which limits 

the performance of SW speculation

• HW speculation can maintain a precise exception model

• Can achieve higher performance on older code (without 

recompilation)

Main disadvantage:

• Extremely complex implementation and extensive need for 

hardware resources
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Implementing speculation
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 Key idea

• Allow instructions to execute out of order 

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking 

an exception) until an instruction commits 

 Strategies:

• Must separate bypassing of results among instructions from 

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction 

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not 

commiteed



Lund University / EITF20/ Liang Liu 2016

Tomasulo extended to support speculation
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ROB (reorder buffer)

41

 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially 

replaced by the ROB
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ROB (reorder buffer)
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 When MUL.D is ready to commit
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Four-step speculation

43

 Issue:

• Get instruction from instruction queue and issue if reservation 

station and ROB slots available – sometimes called dispatch 

• Send operands or ROB entry #

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB 

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer 

speculative; update register with result (or store to memory) and 

remove instr. from ROB; 

• handle mis-speculations and precise exceptions
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Four-step speculation
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 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or 

exception): remove all instr. from reorder buffer (flush); restart 

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste 

computation power & time if wrong)
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Sandy bridge microarchitecture
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ILP

47

How much performance can be get 

from instruction-level parallelism?
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A model of an idea processor
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 Assumptions for ideal/perfect machine to start:

• Register renaming: infinite virtual registers => all register WAW & 

WAR hazards are avoided

• Branch prediction: perfect; no mispredictions

• Jump prediction: all jumps perfectly predicted

• 2 & 3 => machine with perfect speculation & an unbounded buffer 

of instructions available

• Memory: addresses are known, perfect caches;

 There are only true data dependencies left!
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Upper limit to ILP (# of instruction per cycle)
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Window size impact
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Branch impact
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Register # impact
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Summary
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Summary pipeline - method
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Basic 5-stage pipeline
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Pipeline with several FUs
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Scoreboard pipeline
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Tomasulo pipeline

59



Lund University / EITF20/ Liang Liu 2016

Tomasulo pipeline with speculation
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Summary pipeline - implementation
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