
Lund University / EITF20/ Liang Liu 2016

EITF20: Computer Architecture
Part3.2.1: Pipeline - 3

Liang Liu

liang.liu@eit.lth.se

1

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far (pipeline)

2

Lund University / EITF20/ Liang Liu 2016

Instruction level parallelism (ILP)

3

 ILP: Overlap execution of unrelated instructions:

Pipelining

 Pipeline CPI = Ideal CPI + Structural stalls + Data

hazard stalls + Control stalls

 Two main approaches:

• DYNAMIC ⇒ hardware detects parallelism

• STATIC ⇒ software detects parallelism

• Often a mix between both

Lund University / EITF20/ Liang Liu 2016

Dependencies

4

 Two instructions must be independent in order to

execute in parallel

 There are three general types of dependencies that

limit parallelism:

• Data dependencies (RAW)

• Name dependencies (WAR, WAW)

• Control dependencies

 Dependencies are properties of the program

Whether a dependency leads to a hazard or not is a

property of the pipeline implementation

Lund University / EITF20/ Liang Liu 2016

Dynamic branch prediction

5

 Branches limit performance because:

• Branch penalties

• Limit to available Instruction Level Parallelism

 Dynamic branch prediction to predict the outcome of

conditional branches

• Branch history table

• Branch target buffer

 Benefits:

• Reduce the time to when the branch condition is known

• Reduce the time to calculate the branch target address

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

6

 Scoreboarding is to execute an instruction as early as possible

 Instructions execute out-of-order when there are sufficient

resources and no data dependencies

 A scoreboard is a hardware unit that keeps track of

• the instructions that are in the process of being executed

• the functional units that are doing the executing

• and the registers that will hold the results of those units

 A scoreboard centrally performs all hazard detection and

instruction control

Lund University / EITF20/ Liang Liu 2016

Scoreboard functionality

7

 Issue: An instruction is issued if:

• The needed functional unit is free (there is no structural hazard)

• No functional unit has a destination operand equal to the destination of

the instruction (resolves WAW hazards)

 Read: Wait until no data hazards, then read operands

• Performed in parallel for all functional units

• Resolves RAW hazards dynamically

 EX: Normal execution

• Notify the scoreboard when ready

Write: The instruction can update destination if:

• All earlier instructions have read their operands (resolves WAR

hazards)

Lund University / EITF20/ Liang Liu 2016

Factors that limits performance

8

The scoreboard technique is limited by:

 The amount of parallelism available in code

 The number of scoreboard entries (window size)

• A large window can look ahead across more instructions

 The number and types of functional units

• Contention for functional units leads to structural hazards

 The presence of anti-dependencies and output

dependencies

• These lead to WAR and WAW hazards that are handled by stalling the

instruction in the Scoreboard

 Number of data-paths to registers

Tomasulo’s algorithm addresses the last two

limitations.

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

9

Lund University / EITF20/ Liang Liu 2016

Tomasulo algorithm

10

Another dynamic instruction scheduling algorithm

 For IBM 360/91, a few years after the CDC 6600

(Scoreboard)

 Goal: High performance without compiler support

Lund University / EITF20/ Liang Liu 2016

Registr renaming

11

 Potential WAR harzard on F6

• If ADDD finishes before DIVD starts

 Register renaming

• Another temperoray register (FT) instead of F6

• Any subsequent uses of F6 should be replaced by FT (until the next

wirte to F6)

 Register renaming can be done:

• statically by the compiler

• dynamically by the hardware

DIVD F10, F0, F6

ADDD FT, F8, F2

...

SD FT, 35(R3)

LD FT, 34(R2)

...

DIVD F10, F0, FT

ADDD F6, F8, F2

Lund University / EITF20/ Liang Liu 2016

Tomasulo orgnizations

12

Lund University / EITF20/ Liang Liu 2016

Reservation stations

13

 Op:Operation to perform (e.g., + or –)

 Vj, Vk: Value (instead of reg specifier) of Source operands

 Qj, Qk: Reservation stations (instead of FU) producing source

registers (value to be written)

• Note: Qj,Qk=0 => ready

• V and Q filed are mutual exclusive

 Busy: Indicates reservation station or FU is busy

 Register result status—Indicates which RS will write each

register

• Blank when no pending instructions that will write that register

Lund University / EITF20/ Liang Liu 2016

Three stages of Tomasulo algorithm

14

 Issue – get instruction from instruction Queue

• If matching reservation station free (no structural hazard)

• Instruction is issued together with its operands values or RS point

(register rename, handle WAR, WAW)

 Execution – operate on operands (EX)

• When both operands are ready, then execute (handle RAW)

• If not ready, watch Common Data Bus (CDB) for operands (snooping)

 Write result – finish execution (WB)

• Write on CDB to all awaiting RS, regs (forwarding)

• Mark reservation station available

• Data Bus

 Normal Bus: data + destination

 Common Data Bus: data + source (snooping)

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 0

15

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 1

16

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 3

17

Note:

1. Can have multiple

loads

2. Registers names are

removed (“renamed”)

in Reservation

Stations

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 4

18

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 5

19

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 7

20

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 10

21

Can we write the

result of ADDD?

Lund University / EITF20/ Liang Liu 2016

Elimation of WAR hazard

22

 ADDD can safely finish before DIVD has read register F6

because:

• DIVD has renamed register F6 to the reservation station

• LD broadcasts its result on the Common Data Bus

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 11

23

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 16

24

Lund University / EITF20/ Liang Liu 2016

Tomasulo example, cycle 57

25

Lund University / EITF20/ Liang Liu 2016

Comparing: Scoreboard example, CP62

26

Lund University / EITF20/ Liang Liu 2016

Tomasulo vs Scoreboard

27

Differences between Tomasulo Algorithm and Scoreboard

 Control and buffers distributed with Function Units versus

centralized in scoreboard

 Registers in instructions replaced by pointers to reservation

stations

• Register renaming, helps avoid WAR and WAW hazards

• More reservation stations than registers; so allow optzns compilers can’t do

• Operands stays in register in Scoreboard (stall for WAR and WAW)

 Common Data Bus broadcasts results to all FUs (forwarding!)

Lund University / EITF20/ Liang Liu 2016

Tomasulo summary

28

 Instructions: move from decoder to reservation stations

• In program order

• Dependences can be correctly recorded

• Distributed harzard detection

 Significant increase in HW cost

 Benefits

• Register renaming, remove WAW, WAR hazard

• Out-of-order execution, completion

• Tolerates unpredictable delays (especially for cache)

• Compile for one pipeline - run effectively on another

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

29

Lund University / EITF20/ Liang Liu 2016

Getting CPI <1 !?

30

Issuing multiple (independent) instructions per clock cycle

 Superscalar: varying number of instructions/cycle (1-8)

scheduled by compiler or HW

• IBM Power5, Pentium 4, Sun SuperSparc, DEC Alpha

• Simple hardware, complicated compiler (static) or...

• Very complex hardware but simple for compiler (dynamic)

 Very Long Instruction Word (VLIW): fixed number of

instructions (3-5) scheduled by the compiler

• HP/Intel IA-64, Itanium

• Simple hardware, difficult for compiler

• High performance through extensive compiler optimization

Lund University / EITF20/ Liang Liu 2016

Approches for multiple issuing

31

Lund University / EITF20/ Liang Liu 2016

VLIW

32

 A number of functional units that independently execute

instructions in parallel.

 The compiler decides which instructions can execute in

parallel

 No hazard detection needed

Lund University / EITF20/ Liang Liu 2016

VLIW instuction format - Itanium

33

Lund University / EITF20/ Liang Liu 2016

VLIW architecture- Itanium

34

Lund University / EITF20/ Liang Liu 2016

VLIW limitations

35

 Limited Instruction Level Parallelism

• With n functional units and k pipeline stages we need n * k independent

instructions to utilize the hardware

 Memory and register bandwidth

• With increasing number of functional units, the number of ports needed at

the memory or register file must increase to prevent structural hazards

 Code size

• Compiler scheduled pipeline “bubbles” take up space in the instruction

• Need more aggressive loop unrolling to work well which also increases

code size

 No binary code compatibility

• Different pipeline stages and # function units requires different code

 Synchronization

• Stall in one FU cause the entire processor to stall

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

36

Lund University / EITF20/ Liang Liu 2016

Hardware-base speculation

37

 Trying to exploit more ILP (e.g., multiple issue) while

maintaining control dependencies becomes a burden

 Overcome control dependencies

• By speculating on the outcome of branches and executing the

program as if our guesses were correct

• Need to handle incorrect guesses

Methodologies:

• Dynamic branch prediction: allows instruction scheduling across

branches (no exe)

• Dynamic scheduling: take advantage of ILP (wait for clear

branch)

• Speculation: execute instructions before all control

dependencies are resolved (basically data flow)

Lund University / EITF20/ Liang Liu 2016

Hardware vs software speculation

38

 Advantages:

• Dynamic branch prediction is often better than static which limits

the performance of SW speculation

• HW speculation can maintain a precise exception model

• Can achieve higher performance on older code (without

recompilation)

Main disadvantage:

• Extremely complex implementation and extensive need for

hardware resources

Lund University / EITF20/ Liang Liu 2016

Implementing speculation

39

 Key idea

• Allow instructions to execute out of order

• Force instructions to commit in order

• Prevent any irrevocable action (such as updating state or taking

an exception) until an instruction commits

 Strategies:

• Must separate bypassing of results among instructions from

actual completion (write-back) of instructions

• Instruction commit updates register or memory when instruction

no longer speculative

 Need to add re-order buffer

• Hold the results of inst. that have finished exe but have not

commiteed

Lund University / EITF20/ Liang Liu 2016

Tomasulo extended to support speculation

40

Lund University / EITF20/ Liang Liu 2016

ROB (reorder buffer)

41

 Contains 4 fields:

• Instruction type indicates whether branch, store, or register op

• Destination field memory or register

• Value field hold the inst. result until commit

• Ready flag indicates instruction has completed operation

 Every instruction has a ROB entry until it commits

• Therefore tag results using ROB entry number

• The renaming function of the reservation stations is partially

replaced by the ROB

Lund University / EITF20/ Liang Liu 2016

ROB (reorder buffer)

42

 When MUL.D is ready to commit

Lund University / EITF20/ Liang Liu 2016

Four-step speculation

43

 Issue:

• Get instruction from instruction queue and issue if reservation

station and ROB slots available – sometimes called dispatch

• Send operands or ROB entry #

 Execution – operate on operands (EX)

• If both operands ready: execute; if not, watch CDB for result;

• When both operands are in reservation station: execute

 Write result – complete execution

• Write on CDB to all awaiting FUs (RSs) & ROB (tagged by ROB

entry #)

• Mark reservation station available

 Commit – update register with reorder result

• When instr. is at head of ROB & result is present & no longer

speculative; update register with result (or store to memory) and

remove instr. from ROB;

• handle mis-speculations and precise exceptions

Lund University / EITF20/ Liang Liu 2016

Four-step speculation

44

 Commit – branch prediction wrong

• When branch instr. is at head of ROB & incorrect prediction (or

exception): remove all instr. from reorder buffer (flush); restart

execution at correct instruction

• Expensive ⇒ try to recover as early as possible (delay in ROB)

• Performance sensitive to branch prediction/speculation (waste

computation power & time if wrong)

Lund University / EITF20/ Liang Liu 2016

Sandy bridge microarchitecture

45

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

46

Lund University / EITF20/ Liang Liu 2016

ILP

47

How much performance can be get

from instruction-level parallelism?

Lund University / EITF20/ Liang Liu 2016

A model of an idea processor

48

 Assumptions for ideal/perfect machine to start:

• Register renaming: infinite virtual registers => all register WAW &

WAR hazards are avoided

• Branch prediction: perfect; no mispredictions

• Jump prediction: all jumps perfectly predicted

• 2 & 3 => machine with perfect speculation & an unbounded buffer

of instructions available

• Memory: addresses are known, perfect caches;

 There are only true data dependencies left!

Lund University / EITF20/ Liang Liu 2016

Upper limit to ILP (# of instruction per cycle)

49

Programs

In
s

tr
u

c
ti

o
n

 I
s

s
u

e
s

 p
e

r
c

y
c

le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Lund University / EITF20/ Liang Liu 2016

Window size impact

50

Lund University / EITF20/ Liang Liu 2016

Branch impact

51

Lund University / EITF20/ Liang Liu 2016

Register # impact

52

Lund University / EITF20/ Liang Liu 2016

Summary

53

Lund University / EITF20/ Liang Liu 2016

Outline

 Reiteration

 Dynamic scheduling - Tomasulo

 Superscalar, VLIW

 Speculation

 ILP limitations

What we have done so far

54

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - method

55

Lund University / EITF20/ Liang Liu 2016

Basic 5-stage pipeline

56

Lund University / EITF20/ Liang Liu 2016

Pipeline with several FUs

57

Lund University / EITF20/ Liang Liu 2016

Scoreboard pipeline

58

Lund University / EITF20/ Liang Liu 2016

Tomasulo pipeline

59

Lund University / EITF20/ Liang Liu 2016

Tomasulo pipeline with speculation

60

Lund University / EITF20/ Liang Liu 2016

Summary pipeline - implementation

61

